A Foundation for Modern Theorem Proving in Lean 4

Where Proofs Meet Programs

By

Maia Traforti

School of Mathematics and Statistics

University of Canterbury

Submitted on: February 5th, 2025
Under the supervision of Robert Culling

A research report submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science (Mathematics)

-

Logical Foundations

History and Motivation

Preliminaries

2.1 Formal Logic
2.2 Models of Computation
2.3 Formal Proofs

Natural Deduction

3.1 Fundamental Principles
3.2 Rules of Inference
3.3 Proof Construction
3.4 Computational Properties

The Untyped Lambda Calculus

4.1 Definition and Syntax
4.2 Term Construction
4.3 Operations
4.4 Computational Properties
4.5 Exampleso o

The Simply Typed Lambda Calculus

5.1 Definition and Syntax
5.2 Typing Judgements
5.3 Rules of Inference
5.4 Computational Properties

Dependent Type Theory

6.1 The Calculus of Constructions

6.2 The Calculus of Inductive Constructions

The Curry-Howard Correspondence

I The L3aVN Proof Assistant

8

9

Introduction

Syntax

10 Proof Terms

Contents

15

..................... 15
..................... 16
..................... 16
..................... 17
..................... 17

20

..................... 20
..................... 20
..................... 22
..................... 26

27

..................... 28
.............................. 30

32

42

43

46

48

CONTENTS

11 Tactic Mode
11.1 Tactic Categories o o o e e

12 Formalising Mathematics
12.1 The Natural Numbers 0 e
12.2 Algebraic Structures
12.3 Mathlib o

Appendices

The Lambda Cube

iii

50
51

54
54
56
63

65

66

iv

CONTENTS

Part 1

Logical Foundations

CHAPTER

History and Motivation

The development of formal logic and the foundations of computability have evolved hand-in-hand over the
last century, with important ideas bubbling up in stages to form the modern conception of propositions as
types. We will examine several important developments in this history, focusing on how evolving approaches
to logic and computability gradually laid a foundation for the correspondence between logical propositions
and type theory. Formal logic saw its modern origins in the work of Gottlob Frege in the late 19th century.
In his Begriffsschrift, published in 1879, Frege introduced the first fully symbolic system of logic, including
quantified variables and a logical notation that would be recognisable to modern logicians. Importantly,
Frege’s work shifted logic from the study of the laws of thought to the study of abstract, formal systems (Thiel,
1982). Logical propositions were now represented by formal symbolic expressions, manipulated according to
explicit rules. This step began the distillation of logic to symbolic form, a proper leap in the early development
of the systems we use today (Newen et al., 2001). As Frege’s work filtered through the mathematical world in
the early 20th century, Bertrand Russell went on to develop his type theory as an attempt to resolve certain
paradoxes that arose from Frege’s naive set theory, such as Russell’s paradox (Peckhaus, 1997). In Russell’s
type theory, every term has a type, and types are arranged hierarchically (Boffa, 1984). This stratification
of objects into levelled types resolved the known paradoxes, at the cost of making the system much more
complicated. Very importantly though, in Russell’s system, propositions were considered to be of a logical
type—the first step towards drawing together notions of logical proposition and type (Martin, 1943).

A major contribution to formal logic and the foundations of mathematics came in the 1930s through the
work of Gerhard Gentzen. Gentzen introduced the key idea of analytic proof, where the structure of a
proof mirrors and breaks down the structure of what is being proved (Peckhaus, 1997). He developed the
technique of natural deduction, where proofs are constructed through the successive application of inference
rules that introduce or eliminate logical connectives. The resulting proofs have a clear structure that reflects
the shape of the propositions being proved (Pelletier and Hazen, 2012). This introduced a new degree of
structural correspondence between proofs and propositions. In the 1960s and 70s, a cross-pollination occurred
between formal logic and the budding field of computer science through the Curry-Howard correspondence
(also known as the proofs-as-programs correspondence) (Irwin, 2008). Logician Haskell Curry and computer
scientist William Howard independently observed a near-poetic analogy between natural deduction proofs
and certain programming languages. Specifically, the inference rules of natural deduction were seen to
correspond exactly to type inference rules for the simply typed lambda calculus. This incited a curiosity
around the relation between logical proofs and computer programs, as well as between logical propositions
and types in programming languages (Emerich, 2016).

The Curry-Howard correspondence came to life in the work of Per Martin-Lof in the 1970s and 80s as
he investigated intuitionistic type theory. Martin-Lof’s work brought together the threads of Russell’s type
theory, Gentzen’s natural deduction, Church’s lambda calculus, and the Curry-Howard correspondence into

a single unified framework (Aschieri and Zorzi, 2016). In Martin-Lof’s system, propositions are directly

equated with types. Any logical proposition can be seen as specifying a type, and a proof of that proposition
corresponds to a term of that type. The structure of a proof matches the structure of the corresponding
lambda term (Hofmann, 1994; Ireland, 1993). The concept of propositions-as-types was now explicitly
formulated and became known as the Curry-Howard correspondence. In logic, it constitutes a continuation
and refinement of the structuralist approach initiated by Gentzen, where the prominent features of logic arise
from the structure of proofs. In computer science, it has led to a bloom of work on functional programming
languages and proof assistants where programs and proofs exist on the same continuum (Dowek, 2012).
Languages like Lean, Coq, Agda, and Idris use highly expressive type systems to enforce program correctness
and allow proving mathematical theorems. The correspondence between proofs and programs also reveals
an exciting new perspective on the nature of computation itself (Barthe and Elbers, 1996). Through the
lens of this correspondence, computational models can be seen as a dynamic expression of the structure
of mathematical proofs — no longer are these concepts theoretically distinct or even partially related. The
lambda calculus can be viewed not just as a system of computation, but as a way of capturing the essential
structure of logical reasoning (Scott, 1980). The clean semantic foundation this offers for programming
languages has enabled the development of whole new paradigms of coding, including the current growth of
languages that incorporate dependent types (Martin, 2008). The story of propositions-as-types is that of the
progressive refinement and structuralisation of logic, and the parallel development of models of computation.
As logic became more symbolic and structural through the work of early modern logicians such as Frege,
Russell, and Gentzen, and as the foundations of computation were laid by figures like Church, Gédel, and
Turing, the deep currents carrying both fields slowly brought them together (Nowak, 1977). The tree they
grafted was the Curry-Howard correspondence, and the fruit was a remarkable unification of logic and
computation through the common language of type theory (Fairtlough and Mendler, 2000). Today, the ideas
that began with Russell’s and Gentzen’s efforts to refine logic, and with Church’s and Turing’s models of
computation, have developed into a profound paradigm for the structure of formal systems, with implications
for mathematics, computer science, and our understanding of the nature of reasoning and computation (Mella,
2012).

CHAPTER

Preliminaries

2.1 Formal Logic

Formal logic is the study of valid reasoning, developed through centuries of philosophical and mathematical
inquiry. Beginning with Aristotle’s syllogistic reasoning and advancing through contributions from mathe-
maticians such as Frege, Russell, and Gddel, formal logic evolved from qualitative philosophical arguments
into precise mathematical systems (Crossley, 2011). This transformation was motivated by the need to
establish secure foundations for mathematical reasoning, particularly as mathematicians encountered para-
doxes in set theory and questions about the consistency of arithmetic in the late 19th and early 20th
centuries (Markov, 1968; Troelstra, 1977a). Formal logic provides a mathematical framework for analysing
the structure of mathematical statements and the relationships between them, enabling rigorous verification
of mathematical proofs. Through formalisation, logical arguments become mathematical objects that can
be studied with mathematical precision, leading to important results about the capabilities and limitations
of mathematical reasoning itself. We will consider a systematic approach to formal logic that breaks the
study into two distinct components: elementary frameworks and logical principles. These components fulfill
different roles while working together to create complete systems of mathematical reasoning (Besnard, 1989).

Elementary frameworks establish what we can express in a logical language. The most basic framework,
propositional logic, works with atomic statements and logical connectives (A, V, —, —). First-order predicate
logic (FOL) adds quantification over individual variables, allowing expressions such as Vz(P(z) — Q(z)).
Some statements that we can make with FOL include the commutativity of addition: VaVy(xz + y = y +),
existence of inverses: VaJy(z + y = 0), and transitivity of order: VaVyVz((xz < y Ay < z) = = < z).
Second-order logic (SOL) introduces quantification over predicates, extending this expression to statements
such as mathematical induction: VYP((P(0) A Vn(P(n) — P(n + 1))) — VnP(n)), completeness of real
numbers: VS((S # 0 A S is bounded above) — S has a least upper bound), and finite sets: V.S(In3f(f
is a bijection from S to 1,...,n)). Higher-order logic (HOL) extends this to include quantification over
functions of functions and properties of properties such as the continuity of functions: VfVzVe > 03§ >
OVy(lz —y| < 6 = |f(z) — f(y)| < €), compactness: VF(VG C F(if G is finite then (G # 0) — N F # 0),
and functionals (a function that takes other functions as its input and returns an element of some field
as its output): VF((F is a linear functional on vector space V) — certain properties hold). So we see
a distinct hierarchy of expressive power with FOL expressing properties of individual elements and their
relationships, SOL adding the ability to quantify over sets and binary relations, and HOL enabling the
expression of properties of arbitrary functions and properties (Besnard, 1989). Logical principles, on the
other hand, determine how we reason within any given framework. Minimal logic provides foundational rules
for constructive implication. Intuitionistic logic builds on these rules while maintaining constructivity: each
proof must demonstrate explicitly how to construct any object claimed to exist (hence also being known as

constructive logic). Classical logic adds principles such as the law of excluded middle (pV —p), which enables

4

2.1. FORMAL LOGIC 5
non-constructive proof methods (Troelstra, 1977a; Diez, 2000).

An important observation is that any framework can operate under any set of principles. This independence
means that first-order logic works equally well with minimal, intuitionistic, or classical principles, though
with different proof-theoretic strengths. Each combination creates a logical system with specific properties.
This independence has various applications in mathematics and other tasks where reasoning is involved.
Program verification often uses higher-order logic for expressiveness while applying intuitionistic principles
to ensure constructive proofs (Bjesse, 2005). Abstract mathematics often uses first-order logic with classical
principles to balance expressiveness with available proof techniques. The frameworks provide the language
for expressing mathematical concepts, while principles establish the methods for deriving truths within that
language (Diez, 2000; Troelstra, 1977b).

2.1.1 Constructive Logic

Constructive logic provides avenues of reasoning where truth requires explicit demonstration through step-by-
step proof. In constructive mathematics for example, proving that something exists requires actually showing
how to construct it. This approach coincides with computer programming, where algorithms must provide
explicit computational paths. When a constructive mathematical proof shows that 3z P(z), it provides an
actual method to compute such an z, just as a program must compute specific values rather than merely
assert their existence (Troelstra, 1977a; Seisenberger, 2003). The canonical example of the difference between
the constructive vs non-constructive approach to a proof is that of the irrationality of v/2. A constructive
proof expresses this through direct algebraic reasoning. We begin by assuming y/2 can be written as a
fraction p/q where p and ¢ are integers in lowest terms. From this assumption, we derive that 2¢*> = p?.
Therefore p? is even, which means p must be even. We can write p = 2k for some integer k. Substituting
this back, we obtain 2¢? = 4k?, hence ¢? = 2k2. This shows ¢ must also be even. However, this contradicts
our assumption that p and g were in lowest terms. Through this sequence of explicit algebraic steps, we have
directly shown that /2 cannot be rational. In contrast, consider this non-constructive proof that there exist
irrational numbers x and y such that x¥ is rational. Consider the number ﬂ\/ﬁ This number must be either
rational or irrational. If it is rational, then we have found our example: let x =y = V2. If instead \/iﬁ is
irrational, then let x = \/5\/5 and y = V2. In this case, r¥ = (\/ﬁ\@)\/i = \/?2 = 2, which is rational. This
proof establishes existence by using the law of excluded middle, yet provides no way to determine which
case actually holds. The constructive proof provides explicit calculations and a clear sequence of logical
steps that demonstrate why the statement must be true. The non-constructive proof establishes existence
through indirect reasoning using the law of excluded middle, without providing a method to identify specific
examples. Such non-constructive methods, while mathematically valid under classical logic, do not provide
algorithmic paths to finding solutions, and hence are rejected by intuitionistic logic (Longo, 2011; Garofalo
et al., 2015).

Constructive Semantics with BHK The Brouwer-Heyting-Kolmogorov (BHK) interpretation estab-
lishes semantic meaning for intuitionistic logic by connecting logical formulas with constructive mathematical
proofs. The interpretation originated from L.E.J. Brouwer’s early 20th century development of intuitionism,
which viewed mathematics as a creation of the human mind rather than a discovery of abstract truths.
Arend Heyting subsequently formalised Brouwer’s ideas by providing precise proof-theoretic semantics for
intuitionistic logic in the 1930s. Andrei Kolmogorov independently developed similar ideas on the interpre-
tation of logical connectives through problem-solving operations, leading to what we now recognize as the
BHK interpretation’s unified approach to constructive mathematics and logic (Diez, 2000). This interpre-
tation defines truth through the presence of constructive proof: a proposition is considered true precisely

when we possess a constructive demonstration of its validity. The interpretation provides specific meaning

6 CHAPTER 2. PRELIMINARIES

to each propositional logic connective through proof requirements. For conjunction P A @, truth requires
both a proof of P and a proof of @. A disjunction P V @ demands either a proof of P or a proof of @,
accompanied by an explicit indication of which has been proven. An implication P — () requires a con-
struction that transforms any proof of P into a proof of (). Universal quantification VzP(x) necessitates
a construction yielding a proof of P(a) for any given element a (Troelstra, 1977b; Sato, 1997). Existential
quantification JxP(x) requires both a specific element a and a proof that P(a) holds. The proposition L
representing falsehood has no proof, while negation =P represents a construction transforming any proof of
P into a proof of L. This interpretation explains why certain classical principles fail in intuitionistic logic.
Consider the law of excluded middle, PV =P. Under the BHK interpretation, proving this would require
either a direct proof of P or a proof that P leads to contradiction. Since we cannot guarantee having either
for arbitrary propositions P, this principle does not hold generally in intuitionistic logic. Similarly, double
negation elimination (——P — P) fails because proving ——P shows only that assuming P has no proof leads

to contradiction, without constructing a direct proof of P (Restall, 2004).

2.2 Models of Computation

Computation, in its most fundamental sense, is the word we use for the mechanical manipulation of symbols
according to well-defined rules to transform inputs into outputs. This concept is grounded mathematics,
dating back to ancient algorithms like the Fuclidean method for finding greatest common divisors, but it
gained new significance through the work of mathematicians and logicians in the early 20th century. Figures
like Alonzo Church, Alan Turing, and Kurt Gédel developed formal models of computation that proved cer-
tain mathematical functions were ‘effectively calculable’ — meaning they could be evaluated through a finite
sequence of precise mechanical steps (Copeland, 1996). These theoretical foundations directly influenced
the development of modern programming languages and computer science. Programming languages evolved
as tools for expressing computational processes in increasingly sophisticated and abstract ways. Early lan-
guages like assembly code directly reflected the step-by-step operations of computer hardware, while modern
languages provide high-level abstractions that more closely match mathematical and logical concepts. This
evolution mirrors the development of mathematical notation itself — from concrete calculations with specific
numbers to abstract symbolic manipulation (O’Regan, 2012). Type theory, which developed from mathemat-
ical logic, now forms the theoretical foundation for many modern programming languages, enabling them
to express and verify elaborate mathematical properties about programs. The development of dependently
typed programming languages like Lean represents a convergence of computation, mathematical logic, and
formal verification, where programs can express both calculations and mathematical proofs within a single
framework. The connection between computation and mathematics continues to drive innovation in both
fields. Computational methods have transformed many areas of mathematics, enabling new kinds of proofs
and discoveries, while mathematical insights lead to more powerful and reliable programming languages
(de Moura et al., 2015) (Li, 1989).

Type Theory Type theory developed from investigations in mathematics during the early 20th century,
particularly through the work of Bertrand Russell and Alonzo Church (Scott, 1980; Barendregt, 1991).
Type theory provides a formal system for classifying mathematical objects based on their nature or ‘type’,
helping to avoid logical paradoxes that arise when treating all mathematical objects uniformly. Types and
sets serve similar purposes in mathematical foundations, but they differ in their basic construction. In set
theory, everything is ultimately built from sets — numbers, functions, and other mathematical objects are
all constructed as particular sets. The membership relation is primitive, and a set is defined by its elements.
In contrast, type theory takes types as primitive, where a type represents a collection of objects that share

common structural properties and behaviours. Rather than being defined by their elements, types are defined

2.3. FORMAL PROOFS 7

by how their elements can be constructed and used (Hindley, 1997). The moment when types become useful
as a perspective on foundational mathematics is with the introduction of a hierarchy of types, where each
mathematical object belongs to a specific type, and operations are only meaningful when applied to objects
of appropriate types. This system evolved through several stages, from Russell’s simple theory of types
to Church’s simply typed lambda calculus, and eventually to Martin-Lof’s constructive type theory which
forms the basis for modern proof assistants like Lean (de Moura et al., 2015; Scott, 1980). Dependent type
theory was a particularly strong leap, allowing types themselves to depend on values. This extension allowed
for the expression of very subtle mathematical expressions directly within the type system, which sealed
the gap between programs and proofs (Constable, 1991). Dependent types can, for example, express that
a sorting function not only returns a list, but specifically that it returns a sorted permutation of its own
input. The evolution of type theory is a reflection of a bigger shift in mathematical foundations, moving
from set theory toward more computationally-oriented frameworks that naturally support both mathematical
reasoning and program verification. A similar fundamental shift occured with the Four Colour Theorem in
1976, when Kenneth Appel and Wolfgang Haken announced that a proof had been made not by a human
computer, but a mechanical one. Modern type theories, such as the Calculus of Constructions implemented
in Lean, incorporate features like universe polymorphism, inductive types, and cumulative hierarchies, which
express a rich language for expressing mathematical concepts while remaining computationally consistent.
The question remains on what the next transition even deeper into mechanically-verified proofs will look
like — here we will explore it’s foundations and become informed wonderers (Nederpelt and Geuvers, 2014;
de Moura et al., 2015).

2.3 Formal Proofs

A formal proof is a complete and rigorous mathematical argument that follows the rules of a formal logical
system, where each step is explicitly justified using precisely defined inference rules and axioms (Bjesse, 2005).
In a formal proof system like Lean, every logical deduction must be mechanically verifiable, with no hidden
assumptions or intuitive leaps. The proof assistant checks that each step follows validly from previous steps
according to the formal rules of the system, ensuring absolute mathematical certainty (Dixon and Fleuriot,
2006). This contrasts with informal proofs, which are written in natural language and rely on shared mathe-
matical understanding and intuition among human mathematicians (Aberdein, 2007). While informal proofs
can communicate mathematical ideas more naturally and concisely, they often skip ‘obvious’ steps and may
contain subtle gaps or imprecisions that would need to be filled in to create a fully formal version (Dietrich
and Buckley, 2007). The relationship between formal and informal proofs can be understood through an
analogy with programming languages: informal proofs are like high-level pseudocode that communicates the
key algorithmic ideas, while formal proofs are like machine code that spells out every computational step in
complete detail (Culik, 1983). Just as a high-level program must be compiled down to machine instructions,
an informal proof can be elaborated into a formal proof by making all assumptions explicit and filling in
all logical gaps. This process of formalisation often reveals subtle issues that were glossed over in the infor-
mal version. However, formal proofs tend to be much longer and more difficult to read than their informal
counterparts, which is why mathematicians typically work with informal proofs for human consumption
while using formal proofs and proof assistants for mechanical verification of especially important or complex
results (Dixon and Fleuriot, 2006). Proof assistants like Lean aim to bridge this gap by providing high-level
control that allow users to write proofs in a more natural style while maintaining full formal rigor behind
the scenes. The proof assistant elaborates these high-level proof steps into fully formal proofs under the
hood, combining the reliability of formal proof with some of the readability and intuitive understanding of
informal mathematical argument. This is a kind of ‘best of both worlds’ approach, though there remains an

art to writing formal proofs that are both machine-checkable and humanly comprehensible.

CHAPTER

Natural Deduction

3.1 Fundamental Principles

Natural Deduction is a formal system in mathematical logic that models the process of reasoning through
proofs, developed independently by Gerhard Gentzen and Stanistaw Jaskowski in the 1930s (Pelletier and
Hazen, 2012). We will refer to the Gentzen-style natural deduction system, though the Jagkowski approach
retains a familiar air. The system is designed to reflect the intuitive steps one might take when reasoning
informally, making it a ‘natural’ framework for logical deduction. From a technical mathematics perspective,
the fundamental principles of natural deduction can be understood through its structure, rules, and goals.
Natural deduction operates on the principle that every proof begins with a finite set of hypotheses and aims
to derive a conclusion (Li, 1992). The system is constructed around inference rules that govern how logical
connectives (such as A, V, —, =) and quantifiers (¥, 3) can be introduced or eliminated in proofs. These rules
are divided into two categories: introduction rules, which define how to construct a statement involving a
specific connective or quantifier, and elimination rules, which describe how to deduce consequences from such
statements. For example, the introduction rule for conjunction (A) allows one to infer A A B if both A and
B are true, while the elimination rule for conjunction allows one to infer either A or B from A A B (Yaqub,
2013). Subproofs can be made, by temporarily assuming additional premises (hypotheses) to explore their
logical consequences. Once the desired conclusion is reached within the subproof, the temporary assumption
is discharged, and the conclusion can be used in the broader proof without relying on the temporary premise.
This mechanism is particularly evident in rules like implication introduction (— Intro), where assuming A

and deriving B within a subproof allows one to conclude A — B (Kurokawa and Kushida, 2013).

Local soundness in the natural deduction system ensures that if an introduction rule is immediately
followed by its corresponding elimination rule, the result is logically equivalent to bypassing the intermediate
step entirely (Alvez and Lucio, 2005). This guarantees that no invalid conclusions can be derived. Local
completeness ensures that elimination rules retain enough information to reconstruct the original statement
using an introduction rule, ensuring that all valid conclusions can be derived. One could almost think of
this as the introduction and elimination rule for a given expression as being inverse actions to each other
(Thlemann et al., 2008). The rules are all orthogonality defined, in that each action available to a given logical
connective or quantifier is defined independently of others. Direct proofs proceed in natural deduction by
deriving conclusions step-by-step from premises using inference rules, while indirect proofs often involve
assuming the negation of a statement and deriving a contradiction (reductio ad absurdum). One has the
flexibility to proceed with proofs from both propositional and predicate logic, as well as freedom to choose

logics from minimal, intuitionistic, and classical frameworks (Merz, 1997).

8

3.2. RULES OF INFERENCE 9

3.2 Rules of Inference

The logical framework of natural deduction can be described by its rules of inference, which provide the
mechanisms through which valid conclusions can be derived from premises. The rules are categorised into
two main types: introduction rules and elimination rules (Plato, 2001), and are written in the form:
Premises
Conclusion (Rule-Name)

Gentzen described the introduction rules as the ‘definitions’ of the symbols they represent, in that they
specify the grounds under which we may interact with them (Wadler, 2015). Introduction rules allow for
the construction of arbitrarily complex logical statements from simpler ones. For instance, conjunction in-
troduction enables two separately true statements to be combined into a single conjoined statement. These
rules essentially ‘build up’, or ‘introduce’ logical complexity by establishing new connections between already
proven (or assumed) statements. Elimination rules, conversely, permit the extraction of simpler statements
from arbitrarily complex ones. Gentzen described these as ‘consequences’ of the given definitions (introduc-
tion rules). These rules enable the deconstruction of compound logical statements into their constituent parts,
allowing for the derivation of new conclusions from established premises (Humberstone and Makinson, 2011).
For example, conjunction elimination allows the derivation of individual conjuncts from a conjunction. Nat-
ural deduction includes rules for handling the logical operators from both propositional and predicate logic,
including implication (—), disjunction (V), negation (—), and quantification (V and 3) (Schroeder-Heister,
2014).

The introduction rule for conjunction allows the formation of a compound statement A A B from two
individual statements A and B. This rule reflects the intuitive notion that if both A and B are true, then
their conjunction must also be true.

'rA T'HB
'rAAB

Conversely, the elimination rules for conjunction permit the extraction of either component A or B from the

A1

compound statement A A B.
I'AANB I'AAB

rra B TrEp NEe

The introduction rule for disjunction allows one to infer AV B from either A or B alone, holding the idea

that if at least one of the statements is true, the disjunction holds.

T'rA I'-B

% v, — = I
TraAvB 'Y Trave ' '?

The elimination rule for disjunction, often referred to as disjunctive syllogism, is more intricate. If we have
that AV B is true, then we can split our proof into two cases: One where A is true and another where B is
true, and both of these propositions individually conclude to some propoisiton C'. From this, we can confirm

that C' must be true, since both A and B are given and lead to the same conclusion of C.

r-AVB DAFC T,BHC

r-c¢ B

The introduction rule for implication is based on the principle of conditional proof. To introduce A — B,
one assumes A as a temporary hypothesis and demonstrates that B necessarily follows from this assumption.
This method captures the essence of "if-then" statements, ensuring that the implication holds under the

assumption of its antecedent.

10 CHAPTER 3. NATURAL DEDUCTION

INA+B
TFA=B
The elimination rule for implication, commonly known as modus ponens, allows one to derive B directly
from A and A — B.

I

''-A—-B T'FA
I'+B

The introduction rule for negation involves assuming a proposition A and deriving a contradiction from this

MP

assumption, thereby inferring —A (which is actually A — L in disguise!). This resonates with the idea that
if assuming A leads to an impossible outcome, then A must be false.

T,AF L

TFoa "

The elimination rule for negation permits the derivation of any statement C from both A and —A, giv-
ing us the principle of explosion, meaning that contradictory premises can lead to any conclusion in both
intuitionistic and classical logic.
'rA T'H-A
'L

The structural rules of the natural deduction system describe how the proof derivation must be set up,

—-BE

analogous to the regulations around timing and seating placement for a chess match. These rules include
weakening (as shown in Figure 3.1 below), which allows the introduction of irrelevant hypotheses without
affecting the validity of the proof; contraction, which permits the duplication or reuse of hypotheses; and
exchange, which ensures that the order of hypotheses does not influence the derivation process (Indrzejczak,
2010). Natural Deduction as a formal system of logic is sound, which guarantees that all derivable statements
are logically valid—so they hold true under all interpretations. It is also complete, which ensures that if a
statement is logically valid, it can be derived within the system (McCawley, 1991).

[A]!
B—A
A— (B— A

— 1,2
— 1,1

)

Figure 3.1: Proof of H A — (B — A) (Weakening)

Extending minimal logic to intuitionistic logic requires an additional structure, namely that of Ex Falso
Quodlibet (the principle of explosion). From this law, the derivation of a contradiction bears particularly
nasty consequences—the lines of truth and absurdity are blurred and from this context we may draw any
conclusion (Steinberger, 2016). Figure 3.2 below demonstrates the proposition A leading to L and the

resulting derivation of any proposition (in this case B):

AT

L
—XF
B

Figure 3.2: Ex Falso Quodlibet (XF)

Extending further still from intuitionistic logic to classical logic, we introduce the argument of Reductio
Ad Absurdum (RAA). The structure introduced by this assertion gives us that if assuming the negation

3.3. PROOF CONSTRUCTION 11

of a claim leads to a contradiction with what can be derived from the claim itself, then the original claim
must hold (Steinberger, 2016; Aschieri and Zorzi, 2016). This derives from the classical reasoning that a
proposition must be true if its negation is impossible. We see a general derivation of RAA in Figure 3.3

below:
[A]! [-A]?
B B
L RAA2
A

Figure 3.3: Reductio Ad Absurdum (RAA)

The prooftree above demonstrates RAA by showing that assuming A produces some claim B, while assuming
—A leads to =B. The contradiction between B and —B establishes 1, allowing us to conclude A through
RAA. Using RAA, we can also prove Double Negation Elimination (DNE) as shown in Figure 3.3 below.
With -—A we assume —A to arrive at a contradition, then by RAA we get A. Conversely, DNE allows us to
prove RAA. if - A leads to L, then we have =—A, and by DNE we get A.

- LE
— RAA,1
A

Figure 3.4: Connection between DNE and RAA

3.3 Proof Construction

Proofs in natural deduction are carried out in the style of a proof tree. In these representations, each
node corresponds to a formula derived from its parent node(s) according to preceding inference rules. The
root of the tree represents the conclusion, while the leaves represent either initial hypotheses or assumptions
introduced in subproofs (Li, 1992; Pelletier and Hazen, 2012). Take for example, a minimal logic proof of
the sequent P — @, @ — R+ P — R shown in Figure 3.5 below:

[P]* P—Q
—F
Q Q@ —R
R MP
7}3 R — 1,1
_)

Figure 3.5: Proof of P — @, Q — R+ P — R. (Function Composition)

We see that the proof establishes the trasitivity of implication through a combination of implication elim-
ination and introduction rules that follow in a tree-like structure. We see the ability to make temporary
assumptions (here shown as [P]!), and discharge them to prove implications. The proof proceeds linearly
from the premises and assumption to the conclusion, using only the rules of inference allowed by minimal
logic. The proof in Figure 3.6 below demonstrates the use of case analsis in a natural deduction proof through

the interaction between disjunction elimination and implication rules in minimal logic. Here the proof must

12 CHAPTER 3. NATURAL DEDUCTION

handle a premise by considering each case separately, deriving the same conclusion in each case, and then

using an elimination rule to establish that conclusion independently of the particular disjunct.

[P P—R [Q)? Q— D
7 MP D MP
"vp ! "vp
44);47%L1 4——l——f%L2
PvQ@Q P— (RV D) Q— (RV D)
VE
RV D

Figure 3.6: Proofof PVQ, P— R, Q— DFRVD

The process of constructing proofs in the natural deduction system combines both forward and backward
reasoning strategies. Proof construction typically begins with an analysis of both the given premises and the
desired conclusion, working to bridge the gap between them through valid logical steps. When constructing
proofs, one typically employs a strategy of working backward from the desired conclusion while simultaneously
working forward from the given premises (Li, 1992; Pelletier and Hazen, 2012). This bidirectional approach
helps identify the necessary intermediate steps and guides the selection of appropriate inference rules. The
process often involves creating sub-proofs, managing assumptions, and carefully tracking logical dependencies.
An important aspect of proof construction in this system is to be mindful of which assumptions have been
made and which are yet to be discharged (Plato, 2001; Schroeder-Heister, 2014). Temporary assumptions
can be introduced when needed, but must be properly discharged when their use is complete in order to
preserve consistency. The deduction theorem establishes that if a proposition B is derivable from a context
T" together with proposition A, then A — B is derivable from I" alone such that:

T,AF B
- —
I'A—B

The converse also holds through modus ponens:

'-A—B r-A
I'-B

Together, these rules establish that I' U {A} + B if and only if ' - A — B. In practice, the deduction
theorem tells us that we may make assumptions of the antecedent of an implication on the right hand side
of a turnstile if we proceed to discharge it through implication introduction throughout the proof (Wadler,
2015). It requires the logician to maintain proper tracking over the scope of assumptions and ensure that
all dependencies are properly taken care of throughout the proof. The deduction theorem in action can be
demonstrated in the sequent proof - (P — Q) — (=Q — —P) shown in Figure 3.7 below. By the deduction
theorem, we may manipulate the sequent so that as many hypotheses as possible are on the left of the
turnstile. The proof of this new sequent, which we write as P — @, —Q, P - L, will be a proof of the original
sequent after extending it with implication introductions to justify each temporary hypothesis.

3.4. COMPUTATIONAL PROPERTIES 13

P—Q' QP
MP 3
Q [-Q]
MP
i —1,2
LP_)I’?)
@2 —I,1

)

(P— Q)= (-Q— ~P)

Figure 3.7: Proof of the sequent F (P — Q) — (—-Q — —P)

Classical reasoning through the law of excluded middle is demonstrated in Figure 3.8 below. Here, we assume
=P and derive a contradiction to prove P. The Ex Falso principle gives us two structural components to
the proof —constructing P — @ from contradictory premises, and deriving the final contradiction needed for

negation elimination.

P (PP
XF
- I
(P = Q)! Pog
N XF
— -E.2
r — 1.1

)

ﬁ(P — Q) — P
Figure 3.8: Proof of the sequent =(P — Q) — P

Various techniques exist for handling different types of logical statements, not so dissimilar to sequences of
moves in chess. For example, in conjunctive conclusions, one must prove each conjunct separately before
combining them (Barthe and Elbers, 1996; Dietrich and Buckley, 2007). Recognition of this encourages
the logician to visualise the playing field with the steps necessary to perform this action, and any required
temporary hypotheses in the overall map. For conditional statements, one assumes the antecedent and
works to prove the consequent. Disjunctive reasoning involves case analysis, where different possibilities are
explored separately. As we will see in the next chapter, Lean can be thought of as ‘gamifying’ a problem —
requiring resolution in a series of ‘goals’. Proof construction in the natural deduction system is at the heart

of this interwoven web of goals, with many smaller proofs combining to create a larger one.

3.4 Computational Properties

The natural deduction system possesses several important theoretical properties that establish its validity
and utility as a logical system. The most fundamental of these properties are soundness and completeness,
which together ensure the system’s reliability and comprehensive nature (Pelletier and Hazen, 2012). Sound-
ness guarantees that any conclusion derived through the rules of natural deduction is logically valid. This
property tells us that if a conclusion is provable from certain premises using natural deduction rules, then
that conclusion is indeed a logical consequence of those premises. Soundness is essential for maintaining
the system’s integrity and ensuring that proofs constructed within it are trustworthy (Indrzejczak, 2010).
Completeness, on the other hand, establishes that all valid logical consequences can be proved within the
system (Troelstra, 1977b). This means that if a conclusion is a logical consequence of certain premises, then

there exists a natural deduction proof of that conclusion from those premises. The completeness property

14 CHAPTER 3. NATURAL DEDUCTION

ensures that the system is powerful enough to capture all valid logical relationships (Pelletier and Hazen,
2012). Natural deduction supports normalisation, which allows for the elimination of detours in proofs; lead-
ing to more direct and elegant derivations. Furthermore, the sub-formula property states that any formula
appearing in a normal proof is a sub-formula of either the conclusion or one of the premises. This property

is particularly valuable for proof search and automated theorem proving (Sieg and Byrnes, 2005).

CHAPTER

The Untyped Lambda Calculus

4.1 Definition and Syntax

The Untyped Lambda Calculus, often written A-calculus, is a formal system developed by Alonzo Church
in 1936 as a model of computation based on function abstraction and application. The A-calculus consists
of a single transformation rule, variable substitution, and function definition scheme (Grue, 2001). The
A-calculus is a universal model of computation, capable of expressing anything that a Turing machine can
express. The basic definition of the A-calculus revolves around the idea of ‘terms’ — which can be variables,
function abstractions, or function applications (Machado, 2013). Let V be a countably infinite set of variables,

denoted by z, y, z, etc. The set of A-terms, A, can be defined inductively:

A=z where z € V (variables are terms)
| (Az.M) where x € V, M € A (abstractions are terms)
| (M N) where M, N € A (applications are terms)

Variables Variables in the A-calculus are atomic entities used to represent arbitrary values or placeholders
within a term. They are the simplest form of A-terms and can be freely used within abstractions and
applications. The main role of variables is to allow the construction of generic functions that can accept

arguments and enable substitution (Fischer, 1972).

Abstractions Also known as anonymous functions, abstractions are used to define functions in the A-
calculus and consists of two parts: a bound variable, and a term (the function body). In the abstraction
(Az.M), the variable x is the parameter bound in the term M. The X symbol is used to denote the creation of
an anonymous function, and the dot (.) separates the bound variable from the function body. Abstractions
allow the definition of functions without explicitly naming them, hence the label of ‘anonymous functions’,
and enable the creation of higher-order functions as they can take other functions as arguments or return

functions as results (Barendregt, 2012).

Appplications Also known as function applications, applications represent the act of applying a function
to an argument. The application (M N) represents the application of the function M to the argument N.
When an application is evaluated (reduced), the bound variable in the abstraction M is substituted with
the argument N in the function body. Applications allow the execution of functions and the propagation of
values throughout the term and multiple applications can be nested to represent the sequential application

of functions to their respective arguments (Berline, 2000).

15

16 CHAPTER 4. THE UNTYPED LAMBDA CALCULUS

4.2 Term Construction

Construction of terms in the A-calculus follows a set of inductive rules that define how variables, abstractions,
and applications can be combined to form valid A-terms. The set of free variables in a term, denoted as
FV (M), consists of all variables that are not bound by an enclosing abstraction. In the case of a variable term
x, the set of free variables is simply {x}. For an abstraction (Azx.M), the set of free variables is determined
by removing the bound variable x from the free variables of the subterm M. In an application (M N), the
free variables are the union of the free variables of both the function term M and the argument term N. The
set of bound variables, denoted as BV (M), follows a similar pattern: for a variable term, the set is empty;
for an abstraction, the bound variable is added to the set of bound variables in the subterm; and for an
application, the bound variables are the union of those in the function and argument terms (Kazmierczak,

1991). We have then, that the set of free variables of a term M can be configured in the following ways:
FV(x) = {z},where z € V

FV(Ax.M) == FV(M)\ {«}
FV((M N)) == FV(M)UFV(N),

and the set of bound variables of a term M, is defined as:

BV (z) ::= 0, where z € V
BV(\x.M) ::= BV(M) U {z}
BV((M N)) == BV(M) U BV(N).

4.3 Operations

Alpha Conversion Alpha conversion allows renaming bound variables in a term consistently. Two terms
that differ only in the names of bound variables are considered a-equivalent. Formally, a-equivalence is

defined as the smallest congruence relation =, on A such that:

a-conversion ::= Az.M =, \y.Mly/x] where y ¢ FV (M)
M, =4 My = M =, M (symmetry)
My =4 M2, My =o M3 = My =, M3 (transitivity)
M, =4 My = (M; N)=, (M N) (compatibility)

Alpha conversion defines how bound variables can be systematically renamed while preserving a term’s
meaning. The relation =, establishes that two terms are equivalent if they differ only in their bound
variable names, formalised through a congruence relation that is symmetric, transitive, and compatible with
term construction. We have that Az.M is alpha-equivalent to Ay.M[y/x] when y is not free in M, ensuring
that renaming maintains the original binding structure without creating unintended variable captures. Alpha

conversion preserves the meaning of a term while avoiding name clashes (Kazmierczak, 1991).

Beta Reduction Beta reduction is the process of applying a function to an argument, replacing the bound
variable in the function’s body with the argument. The SB-reduction relation, denoted —g, is defined as the

4.4. COMPUTATIONAL PROPERTIES 17

smallest relation on A satisfying:

B-reduction ::= (Az.M) N —3 M[N/x] (application)
M —z M = (M N)—s (M N) (left reduction)
N =5 N = (M N)—=z (M N') (
M =5 M' = \x.M —5 \z. M’ (

right reduction)

abstraction)

The process of S-reduction substitutes an argument N for the bound variable z in a function body M when
applying (Ax.M) to N. Additional rules ensure reduction can occur within subterms: both the function and
argument parts of an application can be reduced independently, and reduction can proceed under lambda
abstractions (Barendregt, 1991).

Normal Forms A term is in normal form if it cannot be further reduced using S-reduction. The process
of repeatedly applying S-reduction until no more reductions are possible is called normalisation. A term
may have multiple normal forms or no normal form at all. The Church-Rosser theorem states that if a term
can be reduced to two different terms, then there exists a term to which both can be reduced. This theorem
implies the uniqueness of normal forms, when they exist. The existence of normal forms for all terms is
not guaranteed in the Untyped Lambda Calculus. Some terms, such as (Az.z x) (Az.z z), known as the

w-combinator, do not have a normal form and lead to infinite reductions (Scott, 1980).

4.4 Computational Properties

The untyped lambda calculus is Turing-complete, and reduction is confluent (satisfying the Church-Rosser
property) (Barendregt, 1991). It supports both call-by-value and call-by-name evaluation strategies, with
call-by-name being normalising for more terms but potentially less efficient in practical implementations
(Scott, 1980). The calculus can encode structures such as the natural numbers, booleans, pairs, and recursion
through pure lambda terms (Church encodings), despite lacking primitive data types or explicit recursion
mechanisms (Kazmierczak, 1991).

4.5 Examples

Below we introduce two very cool examples of data structures that can be made with only the variables,
abstractions and applications given in the untyped lambda calculus. We see in action here how possible it

is to truly encode data structures with such a simple language.

4.5.1 Church Booleans

To see a concrete implementation of the untyped lambda calculus, we will consider the Church Booleans,
which are a representation of Boolean values ‘true’ and ‘false’ within the untyped lambda calculus. They
are defined as lambda terms that act as selectors. We define ‘true’ (denoted as true or T') as a lambda term

that takes two arguments and returns the first one. In lambda notation, this is:
true := Az \y.x

Similarly, we define ‘false’ (false or F)) as a lambda term that takes two arguments and returns the second
one:

false := Az \y.y

18 CHAPTER 4. THE UNTYPED LAMBDA CALCULUS

To understand how these terms represent Boolean values, consider their behaviour when applied to two
choices. If we have a conditional scenario where we want to choose between two expressions, say A and B,

based on a Boolean condition C, we can write a conditional expression in lambda calculus as:
CAB
If C is true, then applying true to A and B will result in:
true A B = (Az. \y.x) A B =5 (A\y.A) B =3 A

Thus, when the condition is true, the expression evaluates to A, the first choice. If C is false, then applying
false to A and B will result in:

false A B= (Az.\y.y) A B —3 (M\y.y) B —3 B

Thus, when the condition is false, the expression evaluates to B, the second choice. This effectively
implements a conditional ‘if-then-else’ structure using Church Booleans. We can also define logical operations
using these Church Boolean representations. For example, the logical ’AND’ operation can be defined as
follows:

and := Ap.\q.p q false

We now consider how and works. If p is true, then p ¢ false becomes true ¢ false, which reduces to g.
So, if the first argument p is true, the result of and p ¢ is just the second argument ¢. If p is false, then
p q false becomes false ¢ false, which reduces to false. Therefore, and p ¢ is true only if both p and ¢
are true, and false otherwise, which is the correct behaviour for logical ’AND’. Similarly, the logical 'OR’
operation (denoted as or) can be defined as:

or := Ap.\q.p true ¢

If p is true, then p true g becomes true true g, which reduces to true. If p is false, then p true ¢ becomes
false true ¢, which reduces to ¢q. So, or p ¢ is true if either p is true or ¢ is true (or both), and false
only if both are false, which is the behaviour of logical ’OR’. Finally, the logical 'NOT" operation can be
defined as:

not := Ap.p false true

If p is true, then p false true becomes true false true, which reduces to false. If p is false, then
p false true becomes false false true, which reduces to true. Thus, not p correctly inverts the Boolean
value of p.

4.5.2 Church Numerals

Church Numerals are a representation of natural numbers within the untyped lambda calculus. A Church
numeral for a number n is a higher-order function that takes two arguments: a function f and a value x. It
applies the function f to the value x exactly n times. This representation allows arithmetic operations to be
performed purely through function composition and application, without requiring primitive numeric types
whatsoever, which is quite impressive. This is just one example of an entire system that can be delivered
without a single data-structure other than functions and their composition. The fact that Church numerals
can represent all computable functions on the natural numbers provides a theoretical foundation for under-
standing computation in terms of pure functions. Here, we can begin to see how functional programming
languages began to take shape, and we haven’t even introduced types yet! Now for some demonstrations.

4.5. EXAMPLES 19

The Church numeral for zero (or 0) is defined as a function that applies the function f zero times to =,

which is simply returning z itself. In lambda notation:
zero := A\f.\zr.x
The Church numeral for one (1) is a function that applies f once to x:
one := Af.\x.f x
The Church numeral for two two (2) applies f twice to z:
two := Af A x.f (f x)
In general, the Church numeral for a natural number n (denoted as) is given by:

ni=AfAx f(f (- (f @)-)
N———

n times

This can be understood as representing the number n by the action of applying a function n times. We can
define arithmetic operations on Church numerals too. The successor function (succ), which takes a Church

numeral 77 and returns the Church numeral n + 1, can be defined as:
succ = A\nAfAx.f (n f x)

To see how this works, consider applying succ to a Church numeral n. Here, (succ 1) becomes (Af Az.f (7 f x)).
When applied to f and z, it becomes f (7 f x). Since m applies f to = n times, (7 f x) is equivalent to
f™(z). Therefore, f (m f x) is f(f"(z)) = f**(z), which is the Church numeral for n + 1.

Addition of Church Numerals Addition of two Church numerals 77 and 77 can be defined as:
plus := dm.AnAf A z.m f (n f x)

When we apply plus to m and 71, we get (Af Az.m f (7 f x)). Applying this to f and x givesusm f (70 f x).
Then @ f x applies f to x n times, resulting in f™(z). Then ™ f is applied to this result, applying f another
m times. Thus, in total, f is applied m + n times to z, which is the Church numeral for m + n.

Multiplication of Church Numerals Multiplication of two Church numerals 7 and 7 can be defined
as:
mult := Am.AnAf.m (n f)

When we apply mult to m and 7, we get (A\f.m (7 f)). Applying this to f gives us m (7 f). The term (7 f)
represents applying f n times. Let g = (7 f). Then m (7 f) =™ g. M g applies g to some value x, m times.
Applying g once means applying f n times. Applying g m times means applying f n X m times. Therefore,
this gives the Church numeral for m x n.

CHAPTER

The Simply Typed Lambda Calculus

5.1 Definition and Syntax

The Simply Typed Lambda Calculus extends the untyped lambda calculus by introducing a formal type
system alongside terms. The syntax consists of two inductively defined expressions —types and terms:

Types 7 :=unit| 7 — 7

Terms ex=()|x|erea| Ax:Te

Types Type construction in the STLC starts from a base type unit and builds up with function types. For
example, a base type Z may extend inductively to produce a function type Z — N, a function which take
inputs of type Z and produces outputs of type N. Additionally, we have that if 71 and 75 are valid types,
then the function type 7 — 7 is also a valild type. This recursive definition allows for the construction
of arbitrarily complex types from simpler ones. For example, Bool — (Bool — Bool) is a valid type that
represents a function taking a Boolean input and returning another function from Booleans to Booleans.
Function types associate to the right, meaning 7 — 75 — 73 is interpreted as 71 — (72 — 73) (Barendregt,
2013).

Terms Terms in STLC include the unit value (), variables z, function applications e; ey, and lambda ab-
stractions Az : 7.e. The unit value () serves as a primitive term of type unit. Variables represent placeholders
that can be bound by lambda abstractions. Function application e; es applies the function e; to argument
e2. Lambda abstractions Az : 7.e represent functions where x is a variable of type 7, and e is the function
body. Function application remains left-associative, complementing the right-associativity of function types
(Aczel, 1999). Given a function f of type 71 — (72 — 73) and values vy, vs of types 71, T2 respectively, the
expression f vy vy is parsed as (f v1) ve and yields a result of type 73.

5.2 Typing Judgements

Natural semantics directly relate terms to their final values using evaluation judgments. A typing judgment
is an assertion that determines how types are assigned to values. These rules are derived using inference
rules which can be written in the familiar Gentzen-style natural deduction form (Adams, 2006). First, we

introduce the variable rule:

F,gL‘:Tl—Jc:Tvar

This rule establishes that a variable x has type T" when it appears in the typing context I' with that same

20

5.2. TYPING JUDGEMENTS 21

type. Building on the variable rule, the abstraction rule formalises how function types are constructed:

F,J]ZTll_tZTQ
FF()\ISTl.t)STlﬁTQ

This rule states that if a term t has type T under the assumption that x has type T, then the lambda

abstraction Az : Tj.t has the function type 77 — T5. This typing rule corresponds directly to the intuitive
notion of function types, where the type reflects both the input and output types of the function. The

application rule tells us how function application works under the typing system:

I'bt1:Ty =Ty T'hHt:Th
F}_(tth)ITQ

App

This rule says that when applying a function ¢; of type 77 — 15 to an argument 5 of type 71, the resulting

application has type T». The application rule ensures type safety by verifying that functions are only applied
to arguments of the appropriate type (Pierce, 2002).

Reduction Rules

The reduction rules of the STLC define how terms evaluate. The primary reduction rule is S-reduction:
()\.’L‘ : T.tl)tg —B [3? = tg]tl

This rule specifies that applying a function to an argument results in substituting the argument for all free

occurrences of the bound variable in the function body. Complementing -reduction is a-conversion:
ATt =, Ny:T.[z:=yl]t wherey ¢ FV(¢)

Alpha conversion establishes that bound variables can be renamed without changing the meaning of the

term, provided the new variable name doesn’t conflict with existing free variables (Pierce, 2002).

Type System Properties

Subject reduction, or type preservation, is expressed as:

't :T, t1—>5t2
FFtQZT

(Subject Reduction)
This property guarantees that reduction steps preserve typing, ensuring that well-typed terms remain well-
typed throughout computation. The progress theorem is formalised as:

Ft: T
Value(t) v 3t'.(t =5 t)

(Progress)

This establishes that well-typed terms are either already values or can take a reduction step, preventing
terms from becoming stuck in invalid states. Perhaps the most significant property of STLC is strong
normalisation:

Ve, T.(Ft: T = Fv.Value(v) At -3 v)

This property ensures that all reduction sequences starting from a well-typed term eventually terminate in

a value.

22 CHAPTER 5. THE SIMPLY TYPED LAMBDA CALCULUS

5.3 Rules of Inference

In natural deduction, the introduction and elimination rules for propositional connectives specify how to
construct and deconstruct logical formulas. Similarly, in the untyped lambda calculus, rules decide term
construction and reduction. The STLC unifies both of these approaches by incorporating types as syntactic
objects that track the behaviour of terms (Geuvers and Nederpelt, 1994). The original inference rules become
typing judgments, where the turnstile now indicates not just derivability but also type assignment. The
contexts evolve from tracking assumptions about propositions to maintaining type assignments for variables.
Each introduction rule becomes a typing rule for constructing terms of a specific type, while elimination
rules become typing rules for term elimination that preserve type safety. The typing judgments above, along
with the inference rules below, combine to make the set of allowable 'moves’ in the STLC natural deduction
game (Duggan and Bent, 1996). Product Type introduction (xI) is formalised in the form of:

'-M:A FI—N:B(XI)
'-(M,N): Ax B

This rule states that if we have a term M of type A and a term N of type B in context v, we can construct
a pair (M,N) of type A x B. This corresponds to forming an ordered pair of two terms. Product Type

elimination (x E; and X Es) takes the form of:

'HP:AxB
Trmp): 4 FIm)
''HP:AxB

W(XE‘Q)U@)

These rules define projection operations. Given a pair P of type A x B, 71(P) extracts the first component
of type A, and m2(P) extracts the second component of type B. Sum Type introduction (+7; and +15) is

given as:

't-M:A (+1,)(In1) I'-N:B
n
FFinl(M): A+B I'inr(N): A+ B

(+12)(Inr)

These rules define injection into a sum type. The notation Inl(M) injects a term M of type A into the left
side of A+ B, while Inr(N) injects a term N of type B into the right side of A+ B. Sum Type Elimination

(+E), also known as ‘cases’ proceeds as follows:

'FL:A+B T,2:Ar-M:C T,y:BFN:C
I'Fcase L of inl(x)= M |inr(y) = N:C

(+E)(Cases)

This rule implements case analysis on sum types. Given a term L of type A + B and two branches (M
handling the A case and N handling the B case), both producing a result of type C, we can construct a case
expression that produces a C. Unit Type introduction (1I) is defined as:

g1t

This rule states that we can always construct the unit value () of type 1. The empty premises indicate no
preconditions are needed. Unit Type elimination (1E) is handled by:

I'-M:1 THN:A
'EN:A

(1E)

This rule states that given a term M of type 1 and a term N of type A, we can derive N of type A. This

captures that no information is carried by terms of type 1. Empty Type elimination (OE) outside of a

5.3. RULES OF INFERENCE 23

minimal context is given by:
'EM:0

I'F abort(M) : A

(OE)

This rule states that if we have a term Mof type 0 (which is impossible in a consistent context), we can
derive a term of any type A using abort. This captures the principle of ex falso quodlibet (Pierce, 2002;
Pitts, 2019).

Example Derivatives

We will now proceed through some examples of natural deduction sequent proofs using the STLC, explaining
each step along the way to demonstrate the theory behind it. Figure 5.1 starts us off with a proof of
(P = Q) = (~Q — ~P):

f:P=Q" [p:P]

Aprp
fp:@Q [g: Q)
App
(fp)g: L
Az. =P
z.9(f2) ALS

Ay Az.g(f2)y: -Q — —P
Az y.g(zy)z : (P — Q) = (-Q — —P)

Figure 5.1: Proof of (P — Q) — (—-Q — —P)

Starting from the top of the tree, we begin with three assumptions, given by square brackets with superscript
numbers for discharge tracking: [f : P — Q]', [p : P]?, and [g : =Q]3. These represent our working
hypotheses that we’ll eventually discharge through lambda abstraction. The first application rule (App)
combines f : P — @ with p : P to produce fp : Q. This represents the function application typing
judgement we discussed earlier, where a function of type P — @ is applied to an argument of type P,
producing a term of type). The second application rule combines this result fp: Q with g : =@Q. Since =Q
is equivalent to — L in intuitionistic logic, this application produces (fp)g : L, resulting in a contradiction.
Now we begin discharging assumptions through lambda abstraction. The first abstraction (A2) discharges
the assumption [p : P]?, producing Az.g(fz) : =P. This step transforms our term into a function that takes
a proof of P and produces a contradiction, which is precisely what =P means. The next abstraction (A1, 3)
simultaneously discharges [g : =Q]3, giving Ay.Az.g(f2)y : =Q — —P. This represents a function that takes
a proof of =@ and produces a proof of =P. The last abstraction (Al) discharges our initial assumption
[f: P — Q]', giving us our final term A\z.\y.g(xy)z : (P — Q) — (=Q — —P). This represents a function
that takes a proof of P — @ and produces a proof of =) — =P, completing our proof. Figure 5.2 below
demonstrates currying in the STLC. The proof tree shows how we can transform a function that takes a pair
of arguments (P x Q) — R into a curried function P — (Q — R) that takes these arguments one at a time.

p:P" g QP
f+(PxQ)—R (p,q): PxQ
fp.q): R
A f(pq) Q@ — R
Ap-Ag.f(p,q) : P — (Q — R)

(xI)
App

Al

Figure 5.2: Proof of f : (P x Q) - R+ P — (Q — R) (Currying)

24 CHAPTER 5. THE SIMPLY TYPED LAMBDA CALCULUS

Here, we start with a given assumption f : (P x Q) — R and two additional assumptions that we’ll
eventually discharge: [p: P]' and [¢: Q]?. The superscripts 1 and 2 again track which lambda abstractions
will discharge these assumptions. The first inference rule used is (xI), the introduction rule for products.
This rule combines our assumptions p : P and ¢ : @ to form a pair (p,q) : P x Q. This product introduction
is essential as it constructs the appropriate input type for our function f. Next, we apply the application
rule (App) to combine our function f : (P x Q) — R with the pair we just constructed (p,q) : P x Q. This
gives us f(p,q) : R, the result of applying f to our pair of arguments. We then begin the currying process
through lambda abstractions. The first abstraction (A\2) discharges the assumption [¢ : Q]?, producing
Aq.f(p,q) : @ — R. This creates a function that takes a @ and produces an R, while p remains free. The
second abstraction (A1) discharges [p : P]!, producing our target term Ap.A\q.f(p,q) : P — (Q — R). This
completes our fully curried function that takes arguments of type P and) one at a time to produce a result
of type R. This proof shows us the relationship between product types and function types in typed lambda
calculus, specifically how any function that takes a pair of arguments can be transformed into an equivalent
curried function that takes these arguments sequentially. This turns out to be a very useful feature down
the track. We now turn to the sequent given in Figure 5.3 below, which demonstrates uncurrying in the
STLC. This proof shows the inverse of the previous derivation ~how to transform a curried function of type
P — (Q — R) into one that takes a pair of arguments (P x Q) — R:

g: PxQ

m1(g) : P ' f:P—(Q—R) g:PxQ

App ——— T2

f(mi(g): Q@ =R m2(9) : Q
f(m(9))(ma(g)) : R

Ag.f(mi(g))(ma(g)) - (P x Q) = R

App

Al

Figure 5.3: Proof of f: P — (Q — R) F (P x Q) — R (Uncurrying)

We begin with two premises: a variable g : P x @ (which appears twice in the proof tree) and our curried
function f : P — (Q — R). The two appearances of g allow us to extract both components of the pair using
projection operations. On the left branch, we apply the first projection rule (71) to g : P X @ to obtain
m1(g) : P. This extracts the first component of the pair. We then apply this to our function f using the
application rule (App), producing f(mi(g)) : @ — R. This intermediate result is a function expecting an
argument of type (). On the right branch, we apply the second projection rule (m3) to g : P X @ to obtain
ma(g) : Q. This extracts the second component of the pair. We then use another application rule to apply our
intermediate function f(m1(g)) to this second component, yielding f(71(g))(m2(g)) : R. We then use lambda
abstraction (A1) to bind the free variable g, producing our target term Ag.f(m1(g))(m2(g)) : (P x Q) — R.
This results in our uncurried function that takes a pair as input and produces a result of type R. From
this proof, we can see the mechanics behind how product types and their projection operations allow us to
transform a curried function into an uncurried one, completing the bidirectional relationship between these
two ways of handling multiple arguments in the STLC. Rule-abiding typing derivations do not lie, after all.
We now proceed to demonstrate the slightly more cumbersome relationship between negation, products, and
sums in the STLC. The proof in Figure 5.4 shows that given =P + =@ (the sum of negations), we can derive
—(P x Q) (the negation of a product).

5.3. RULES OF INFERENCE 25

g: [P x Q]! g: [P x Q!
—m —m
myg: P [h:—P)? Tag : Q [j: QP
App - App
h(mig) : L j(mag) :+ L
A2 A3
Az.x(mg): P — L Ay.y(mag) : 7Q — L t:=P+-Q

CASES
cases t (Az.x(m19)) (Ay.y(mag)) : L

Az.cases z (Az.x(m2)) (Ay.y(mez)) : PxQ — L

Figure 5.4: Proof of t : =P + -Q F —(P x Q)

We begin with three main branches that come together in a cases (sum elimination) rule. The two left
branches prepare the handling of each possible case from our sum type =P 4+ —Q, while the right branch
provides the sum itself. In the leftmost branch, we start with an assumption g : P x @ (marked for discharge
with [1]) and apply the first projection to get w1 g : P. We then assume h : =P (marked [2]) and apply it to our
projected value, giving h(m1g) : L. This branch is then abstracted over h to produce Az.xz(mg) : =P — L,
showing how we handle the —P case. The middle branch follows a similar pattern but works with the
second component. From the same assumption g, we project mog : @, assume j : =Q (marked [3]), and
apply it to get j(mag) : L. This is then abstracted to Ay.y(mag) : =Q — L, handling the =@ case. The
rightmost branch simply provides our given sum type t : =P + —=@). These three branches come together in
the cases rule, which eliminates the sum type by showing how to handle each possible case. The resulting
term cases t (Azx.z(m1g)) (Ay.y(mag)) : L demonstrates that either case leads to a contradiction. We then
abstract over our initial assumption g with A1, producing Az.cases z (Azx.z(m12)) (Ay.y(mez)) : P x Q — L.
This final type is equivalent to =(P x @), completing our proof. This derivation in particular corroborates
a deep connection in constructive logic: if either component of a product can be refuted (—P + —@Q), then
the product itself can be refuted (—(P x @)) (think back to the BHK interpretation of conjunction). This
proof term explicitly shows how to construct such a refutation by using case analysis on the sum type and
projection operations on the product type. In the final blow of our demonstrations, we will derive how
disjunctions of negations interact with function types in the STLC. The proof in Figure 5.5 shows that given
functions f: P — R and g : @Q — S, along with a disjunction =R V =5, we can derive =P V —Q.

p: P* f:P >R lq: Q) 9:Q—S
App] 5 App] 4
fp: R i:[R] 9q: 8 J:[=8]
Arp Arp
i(fp) : L ilgq) : L
— Al — A3
Aw.i(fw) : =P Ay.j(gy) : Q
INL INr
inl(Aw.i(fw)) : "PV =Q int(Ay.5(g9y)) : PV -Q
A2 Py
Az.inl(Aw.z(fw)) : =P — =PV =Q Az.inr(Ay.z(gy)) : ~Q — - PV -Q t: =RV S

Casgs
cases t (Az.inl(Aw.z(fw))) (Az.inr(Ay.z(gy))) : PV -Q

Figure 5.5: Proof of t : =RV -SF =PV —=Q

The proof tree has three main branches that come together in a cases rule, which is intuitively where we
begin our reasoning process for this proof once we see the need to eliminate a disjunction on the left side of
the turnstile. The left and middle branches construct the possible cases of our target disjunction, while the
rightmost branch provides our given disjunction ¢ : =RV —S. In the left branch, we start with an assumption
[p: P]! and our given function f : P — R. Applying f to p yields fp : R. We then assume [i : =R]? and
apply it to fp to get i(fp) : L. This is abstracted over p to produce Aw.i(fw) : =P, which is then injected

26 CHAPTER 5. THE SIMPLY TYPED LAMBDA CALCULUS

into the sum type using inl to get inl(Aw.i(fw)) : =P V =Q. The middle branch follows a similar pattern
but for @ and S. From assumptions [¢ : Q]® and our given g : Q — S, we get gq : S. With the assumption
[j : =S]*, we obtain j(gq) : L. This is abstracted over g to give A\y.j(gy) : =Q, which is injected using inr
to get inr(Ay.j(gy)) : =P V —Q. The cases rule then combines these branches with our given ¢t : =RV —S.
The resulting term cases ¢ (Az.inl(Aw.z(fw))) (Az.inr(Ay.z(gy))) : =P V =Q shows how to transform either
a proof of =R or a proof of =5 into either a proof of =P or a proof of —=@). This is yet again another display
of the relationship between constructive logic and the BHK: negations can be ‘pulled back’, so to speak,
through functions. If we have functions from P to R and @ to .S, and we know that either R or S is refutable
(=R Vv =), then we can conclude that either P or) must be refutable (—=P V =Q). The proof term here
explicitly constructs this refutation using case analysis and function composition. By now, we are beginning

to get our bearings on constructive logic and how their proofs are derived.

5.4 Computational Properties

The STLC holds some distinct properties that differentiate it from its untyped counterpart. Most notably,
STLC guarantees strong normalisation, meaning every well-typed term reduces to a normal form in a finite
number of steps, making it terminating but not Turing-complete (Barendregt, 1991). The type system en-
forces constraints that prevent the encoding of general recursion and self-application, making it impossible to
represent certain terms that would lead to non-termination in the untyped calculus (such as the w-combinator)
(Pierce, 2002). Like the untyped calculus, STLC maintains confluence through the Church-Rosser property,
ensuring unique normal forms up to a-equivalence (Barendregt, 1991). The typing constraints provide a
static guarantee against type errors and ensures subject reduction (preservation of types under reduction)
(Geuvers and Nederpelt, 1994). The STLC supports both call-by-value and call-by-name evaluation strate-
gies, with both strategies guaranteed to terminate for well-typed terms (Geuvers and Nederpelt, 1994). This
restricted computational power makes it unsuitable for general-purpose programming as a standalone system,
but the STLC is very capable at expressing mathematics which make it a nice foundation for studying type
systems, program verification, and the relationship between logic and computation. Any percieved limitation
might also be seen as a feature, because a consequence of this is well-behaved and terminating programs
(Pierce, 2002).

CHAPTER

Dependent Type Theory

In the simply typed lambda calculus, we work with a strict separation between terms and types. Terms are
the objects we compute with, while types classify these terms and ensure they are used consistently. The
typing relation I' F ¢ : A asserts that term ¢ has type A in context I". In simple types, when we form a
type like A — B or List(A), the type constructors — and List take only types as arguments, never terms.
Dependent type theory dissolves this rigid boundary between terms and types. The most notable difference
is that we can allow types themselves to be indexed by terms, creating families of types that vary based on
term values. This is achieved by introducing dependent function types, written as II(x : A).B(x), where B(x)
is a type that can refer to the term variable z. When we inhabit such a type with a function f, applying
f to an argument a : A gives us a result of type B(a), where we substitute the actual argument a into the
type expression B(z) (Barthe and Coquand, 2000). Consider the formation rules. In simply typed lambda

calculus, we have rules such as:
'-A:Type I'F B:Type

'+ (A— B):Type

In dependent type theory, this generalises to:

I'-A:Type T',z:AF B(z): Type
' (II(z : A).B(x)) : Type

Notice how B can now depend on z, a term variable. We can now express properties about terms within
the type system itself. Consider a function that concatenates vectors. In simple types, we might write this
as Vector — Vector — Vector, but this loses information about the lengths. With dependent types, we can
write II(n : Nat).II(m : Nat).Vector(n) — Vector(m) — Vector(n + m), getting the precise information of
how the output length relates to the input lengths. We can also define dependent pair types X(z : A).B(z),
representing pairs where the type of the second component B(z) depends on the value of the first component
x : A (McKinna, 2006). This allows us to bundle together data with proofs about that data. For example,
we could define a type of ‘perfect squares’ as 3¥(n : Nat).X(m : Nat).Id(n, m x m), where Id is the identity
type expressing equality. The price we pay for this expressivity is that type checking becomes more complex.
To determine if two types II(x : A).B(x) and II(x : A).C(x) are equal, we must check if B(x) and C(z)
are equal types for all possible values of z : A (Siles, 2010). This may require evaluating terms, making
type checking undecidable in general. Practical implementations often restrict the form of dependencies
to maintain decidability while preserving much of the expressive power. Dependently typed systems give
a more expressive basis for formal verification —far beyond what’s possible in simply typed systems (Ou
et al., 2004). Properties that would require separate proof terms in simple types can be encoded directly
in the types themselves, allowing us to express and verify more elaborate mathematical properties within
the type system itself. In dependent type theory, both sum and product types generalise their simply-typed
counterparts (Garner, 2009).

27

28 CHAPTER 6. DEPENDENT TYPE THEORY

Dependent Product Types ([[-types) A dependent product type, denoted II(z : A).B(z), represents
the type of functions where the output type can depend on the input value. The key is understanding that
for each value = of type A, we get a potentially different return type B(x). The formation rule establishes

when we can form a valid []-type:

I'-A:Type T',z:AF B(z): Type
'k (II(x : A).B(x)) : Type

This rule states that to form II(z : A).B(z), we require that A must be a valid type in context I', and that
B(x) must be a valid type in the extended context I,z : A. To construct terms of [[-type, we use lambda
abstraction:

Dyxz: AFb(x) : B(x)
' (Az: Ab(x)) : (x: A).B(x)

This rule shows that a function of type II(x : A).B(x) is constructed by a term that, when given an x of

type A, produces a term of type B(x). To use a [[-type term, we apply it to an argument:

'-f:(x:A).B(x) T'ka:A
'k f(a): B(a)

Note the substitution in the conclusion: the type of the result is B(a), obtained by substituting the actual
argument a into B(x).

Dependent Sum Types (X-types) A dependent sum type, written X(x : A).B(x), represents pairs
where the type of the second component depends on the value of the first component. They generalise

cartesian products by allowing this dependency. The formation rule mirrors that of [[-types:

I'A:Type T',z:AF B(z): Type
'k (X(z: A).B(z)) : Type

To construct a o-type term, we form pairs while respecting the dependency:

Tka:A TFb: Bla)
L't (a,b): X(x: A).B(x)

The elimination rules for o-types involve projections. The first projection is given by:

F'kp:3(x: A).B(x)
F'Em(p): A

and the second projection:
Fkp:X(x: A).Bx)

I'F ma(p) : B(m(p))

Note the dependency in the second projection: the type of ma(p) depends on 71 (p).

6.1 The Calculus of Constructions

In dependent type theory, we move beyond the limitations of the STLC by allowing types to depend on terms.
This means we have terms, types, and the base judgment t : A. Furthermore, we have type constructors
such as function types, given by A — B, and importantly, dependent product types, which we have denoted
by IIz : A.B(z). In the dependent product type Ilz : A.B(z), the type B(z) is not fixed but can vary
depending on the term x of type A. This construction generalises the familiar function space, allowing
for a collection of functions where the output type is not constant but can be determined by the specific

input term. Extending our reach further still, we consider the Calculus of Constructions (CoC), which is an

6.1. THE CALCULUS OF CONSTRUCTIONS 29

even more expressive type theory that builds on dependent type theory by introducing polymorphism — not
only over terms but also over types themselves, and even over special kinds of organisational types called
‘sorts’ In type theory, a sort (or universe) is a classifier for types that can contain other types. Sorts form
a hierarchy where each sort can type the elements of lower sorts, preventing paradoxical circular typing
(Stefanova and Geuvers, 1995) (bye bye Russell’s paradox!). In the CoC, Prop and Type_0, Type_1, etc. are
sorts, where each Type_i can contain Type_j for j < i, and Prop sits at the bottom of this hierarchy. The
word ‘sort’ in CoC can be thought more generally to mean ‘category of types’ in the sense that it will only
ever be referring to either the type Prop or Type_i for some i € N. The CoC is essentially a generalisation of
dependent type theories, incorporating features that allow for a more unified and expressive system suitable
for formalising mathematics and programming (Coquand and Huet, 1988). CoC builds upon the concept of
dependent product types from dependent type theory, but makes the idea of ‘type’ more flexible. CoC is
stratified into a hierarchy of sorts, the two fundamental sorts being denoted as Prop and Type. Prop is the
sort of propositions, and it holds logical statements. Type is the sort of types, and it can hold collections of

data or mathematical structures (Seldin, 1997).

The relationship between Prop and Type While appearing similar at a distance, it is important to
note that Type_0 and Prop are not identical —their relationship is a subtle but important one. In CoC, it is
given that Prop : Type, or more specifically, Prop : Type_0. This means that Prop itself is considered
to be a type, inhabiting the sort Type_0 at the very bottom of the Type hierarchy (Geuvers, 1992). One
could consider Prop as a kind of ‘base case’ for the Type hierarchy. Prop is the sort where propositions
reside. It’s the foundation upon which the purely logical part of CoC is built. Thus, while Prop is an element
of Type_0, and therefore is a part of the classification of the Type hierarchy, it also plays a unique role as
the sort of propositions with special impredicative properties, which is distinct from the predicative nature
of Type_0 and the broader Type hierarchy (Assaf, 2014). This means that propositions can be treated as
types, but not vice versa. So we have that Prop is at the base of the Type hierarchy, ihabiting the sort
Type_0, which inhabits the sort Type_1, which inhabits the sort Type_2, and so on, such that Type_i :
Type_i+1 for each ¢ € N. This hierarchy of sorts is designed to dodge paradoxes when dealing with type
polymorphism and quantification at higher levels (Blanqui et al., 1999).

Syntax and Semantics The terms in CoC are constructed using familiar operations from lambda calculus
and dependent type theory. These include variables, lambda abstractions, and applications. CoC incorpo-
rates dependent product types, given as (x : A) -> B. In dependent type theory, we are accustomed to B
being a type that can depend on a term «x of type A. In CoC, this dependency is extended in two significant
ways. First, A and B themselves can be types, not just terms (Bunder and Seldin, 2004). This allows for
the formation of types that are parametrised by other types. Second, the result (x : A) -> B can itself
be a type or a proposition. Consider the sorts of A and B. If A is of sort s; and B is of sort s, then the
sort of (x : A) -> B is determined by a set of rules (McBride, 2000). We have that if A : Prop and B
: Prop, then (x : A) -> B : Prop. This corresponds to logical implication and universal quantification
within propositions. We also have that if A : Sort_i and B : Sort_j (where Sort can be either Prop or
Type_k for some k), then (x : A) -> B : Sort_{max(i, j)}. Specifically, if s; and sy are sorts, then
(x : s_1) -> s_21is a sort, so a dependent product type formed from sorts is itself a sort (Coquand and
Huet, 1988).

The rules for forming product types and the interaction between Prop and Type lend to the expressive power
of CoC as a language. Consider the rule that if (A : Type) and (B : Prop), then (x : A) -> B : Prop.
This allows us to express universal quantification over elements of a type within propositions (Coquand and
Huet, 1988). For example, if Nat : Type represents the type of natural numbers and P : Nat -> Prop

is a predicate on natural numbers, then (x : Nat) -> P x : Prop represents the proposition ‘for all

30 CHAPTER 6. DEPENDENT TYPE THEORY

natural numbers x, P(z) holds’ Furthermore, since Prop : Type, we can also form types that depend
on propositions. For instance, we might consider a type that is defined only when a certain proposition is
true. The rule that if (A : Type) and (B : Type), then (x : A) -> B : Type allows for the creation
of dependent function types, similar to those found in dependent type theory. However, in CoC, we can
also have product types where the domain is a sort itself. For example, (X : Type) -> List X : Type
represents the type of polymorphic list constructors, where for any type X, List X is the type of lists with
elements of type X (Arbiser et al., 2006). The CoC is the most expressive of the typed lambda calculi before
the final extension we see in the next section. Appendix gives a short exposition on the ways that these
calculi can be visualised as a family, and provides a systematic way to understand how the various typing

dependencies provide specific levels of expression—ultimately culminating in this system.

6.2 The Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) developed in the late 1980s through the work of Christine
Paulin-Mohring and Thierry Coquand at INRIA (Paulin-Mohring, 1993; Coquand and Huet, 1988). The CoC
was powerful enough to express ellaborate mathematical propositions through the correspondence discussed
in Chapter 7, but it lacked native support for inductive definitions, requiring them to be encoded through
complex impredicative encodings. The extension was thus motivated by practical needs in formal verification
— the impredicative encodings of inductive types in pure CoC were unwieldy for real-world theorem proving,
and so they were added in as a primitive type. The CIC has the in-built capability to define types and
propositions through induction, which dramatically expands its expressiveness and practical utility for formal
verification (Paulin-Mohring, 1993; Blanqui, 2003).

6.2.1 Inductive Definitions

In CoC, types and propositions are constructed using products, abstractions, and applications, along with
the sort hierarchy. While powerful, this system lacks a direct way to define types or predicates based on
their construction rules in a recursive or inductive manner. Inductive definitions fill this gap by allowing the
specification of types and propositions by explicitly listing their constructors. A constructor is essentially a
way to build elements of the type or to establish the truth of the proposition Gaind et al. (2013); Paulin-
Mohring (1993). Consider the natural numbers — in a system without inductive definitions, representing
natural numbers and reasoning about them is cumbersome and often requires encoding them using other
structures. The CIC, however, allows us to define natural numbers directly through their inductive nature.
We can say that a natural number is either zero, or it is the successor of another natural number Blanqui
(2003). We might structure the definition as:

Inductive Nat : Type :=
| zero : Nat
| succ : Nat -> Nat.

Here, Inductive Nat : Type := declares a new inductive type named Nat which is a Type. We use the
lines following := to list the constructors. Here, | zero : Nat states that zero is a constructor that
builds an element of type Nat. | succ : Nat -> Nat indicates that succ is a constructor that takes a

Nat as input and produces another Nat. Intuitively, zero represents the number zero, and succ represents
the successor function. Using these constructors, we can build elements of Nat, such as zero, succ zero,
succ (succ zero), and so on, representing 0, 1,2, etc. Beyond simple types, inductive definitions in CIC
are equally powerful for defining propositions. For example, we can define the proposition that a natural
number is even. This is an inductive predicate, which is a proposition parameterised by a value (in this case,

a natural number). The inductive definition of even could be:

6.2. THE CALCULUS OF INDUCTIVE CONSTRUCTIONS 31

Inductive even : Nat -> Prop :=
| even_zero : even zero

| even_succ_succ : forall n : Nat, even n -> even (succ (succ n)).

Here, Inductive even : Nat -> Prop := declares an inductive predicate even which takes a Nat and
returns a Prop. | even_zero : even zero is a constructor stating that even zero is true (base case: zero
is even). | even_succ_succ : forall n : Nat, even n -> even (succ (succ n)) is a constructor

that provides a rule: for any natural number n, if even n is true, then even (succ (succ n)) is also true
(inductive step: if n is even, then n+2 is even). These constructors define how we can prove that a number is
even. For instance, even (succ (succ zero)) (i.e., even 2) can be proven using even_succ_succ applied to
zero and the fact even zero (which we know by even_zero). Inductive definitions are not limited to simple
examples like Nat and even. They can be parametrised and mutually recursive, allowing for the definition
of complex data structures and propositions. Consider the example of polymorphic lists, which are lists that
can contain elements of any type. In CIC, we can define polymorphic lists inductively, parametrised by the

type of elements they contain:

Inductive List (A : Type) : Type :=
| nil : List A
| cons : A -> List A -> List A.

Here, Inductive List (A : Type) : Type :=defines an inductive type List which is parametrised by a
type A. | nil : List A is a constructor representing the empty list for any type A. | cons : A -> List
A -> List A is a constructor that takes an element of type A and a list of type List A, and constructs a
new list of type List A by adding the element to the front of the list. These inductive structures are defined
by the essence of their form in a generic way, applicable to be used for all different types of input. The list
definition here could be used for lists of natural numbers, lists of booleans, lists of other lists, and so on.

6.2.2 Induction Principles

An important feature of inductive definitions in CIC is that they automatically come with associated in-
duction principles. For each inductive definition, the CIC generates an induction principle that reflects the
structure of the definition Paulin-Mohring (1993). These principles are useful for proving properties about
inductively defined types and predicates. For the Nat type, the induction principle is essentially the stan-
dard mathematical induction: to prove a property P(n) for all natural numbers n, we need to prove P(zero)
(base case) and for any n, if P(n) holds, then P(succ n) holds (inductive step) Blanqui (2003). For the
even predicate, the induction principle allows us to prove properties about even numbers by considering the
base case (even zero) and the inductive step (even_succ_succ). Similarly, for lists, structural induction
is derived from the definition of List. The extension from CoC to CIC is significant because it provides a
way to introduce recursion and induction directly into the type theory. Without inductive definitions, CoC
would be far less practical for formalising mathematics and verifying software Paulin-Mohring (1993); G&ina
et al. (2013).

CHAPTER

The Curry-Howard Correspondence

The Correspondence

The Curry-Howard Correspondence is to logic and computation what Maxwell’s Equations are to electricity
and magnetism. Also known as the proofs-as-programs interpretation, this correspondence establishes a
fundamental isomorphism between the act of constructing proofs in a formal logic system and the process of
writing well-typed programs in a typed calculus. This observation provides a formal foundation for the veri-
fication of proofs and software (Sgrensen and Urzyczyn, 2006). This correspondence states that every logical
implication behaves like a computable function type, and conversely, for each valid propositional argument
there exists a typed function. Once considered distributaries, logic and computation reveal themselves to
be an anabranch, intimately interconnected as two ribbons of the same bow. It is worth mentioning that
beyond the scope of this paper, the correspondence extends to category theory, physics, and circuit design
amongst others, and is a fascinating warren with many branching paths to explore. We will focus on logic

and computation here (Paquette, 2009).

Propositions as Types

At the very base of this correspondence, we see that logical propositions can be interpreted as types (Wadler,
2015). Consider the basic logical connectives and their corresponding type constructors. An implication
between two propositions, say A — B, is understood as a function type A — B. The proposition A — B is
true if and only if, given a proof of A, we can construct a proof of B. Similarly, a function of type A — B isa
program that, given an input of type A, produces an output of type B. The input to the function corresponds
to the premise of the implication, and the output corresponds to the conclusion. Similarly, conjunction AA B
corresponds to the product type, A x B. A proposition A A B is true if and only if both A is true and B is
true. Correspondingly, a value of product type A x B is a pair consisting of a value of type A and a value of
type B. To prove A B, we must provide a proof of A and a proof of B, just as to construct a value of type
A x B, we need to provide a value of type A and a value of type B. Disjunction, AV B, corresponds to the
sum type, A+ B (or A® B, or variant type). The proposition AV B is true if and only if either A is true or
B is true (or both). A value of sum type A 4+ B is either a value of type A or a value of type B, along with
an indication of which of the two it is. Proving A V B requires providing a proof of A or providing a proof
of B, along with a justification for the choice, analogous to constructing a value of type A + B. The logical
constant ‘true’ T corresponds to the unit type, which we give as 1 or Unit. The proposition T is always true,
and its proof is trivial (it requires no premises). The unit type 1 has exactly one value, which we denote as
() or unit. This single value serves as the trivial program that inhabits the type 1, corresponding to the
trivial proof of T. The logical constant ‘false’, denoted L, corresponds to the empty type, which we give as
0 or Void. The proposition L is always false, and there is no proof of L. Correspondingly, the empty type
0 has no values. This reflects the fact that there is no program that can have the empty type as its output

type in a meaningful way, mirroring the impossibility of proving falsehood (Sgrensen and Urzyczyn, 2006).

32

33

This initial set of correspondences forms the basis. Propositions like Vo € A, P(z) and 3z € A, P(z) also
have type counterparts, which will be discussed later in the context of dependent types. Table 7.1 below
summarises the correspondence between propositional logic and type theory:

Propositional Logic Type Theory
Component | Formula || Component | Formula
Conjunction A Product X
Disjunction Vv Sum +
Implication — Function —
Negation - False il

Table 7.1: Correspondence between Propositional Logic and Type Theory

Proofs as Programs

Exploring the correspondence further, we see that linking propositions with types gives us that proofs of
propositions can be interpreted as programs of the corresponding types (Irwin, 2008). Table 7.2 below
summarises the correspondence in comparison to how one may consider the connection to set theory. Note
that while similar, the set theoretical analogue is not exactly the same, but it can be helpful when building

an idea of how the correspondence translates to mathematical reasoning.

Logic Type Theory Set Theory
Formula Type Set

Proof Term Element of a set
Formula is true Type has an element Non-empty set
Formula is false Type does not have an element | Empty set
Logical constant T (truth) Unit type Singleton set
Logical constant | (falsehood) | Empty type Empty set

Table 7.2: Correspondence between Logic, Type Theory, and Set Theory

We inspect this connection deeper still by examining the inference rules of natural deduction and their
counterparts in typed lambda calculus. For each logical inference rule, there is a corresponding operation
on programs that mirrors the proof construction. The reader may note that this correspondence smells of
the BHK interpretation explored in Section 2.1.1, which provides a constructive understanding of logical

connectives (Sato, 1997). Consider the inference rule for implication introduction in natural deduction:

(4]

B
A— B

(= 1)

This rule states that if we can derive proposition A under the assumption of proposition A, then we can

34 CHAPTER 7. THE CURRY-HOWARD CORRESPONDENCE

conclude the implication A — B. In the typed lambda calculus, the corresponding rule is lambda abstraction:

Nz:AFM:B (=1
I'tXx:AM:A— B)

Here, T" represents a typing context, x : A signifies that we are assuming a variable x of type A, and M : B
means term M has type B. This rule states that if in a context I' extended with the assumption that x
is of type A, we can derive a term M of type B, then in the original context I', we can form a lambda
abstraction Az : A.M which has type A — B. According to the BHK interpretation, a proof of A — B is
a method that transforms any proof of A into a proof of B. Lambda abstraction precisely embodies this
idea. The term M is a ‘proof of B’ that may depend on the assumption of A, represented by the variable
x of type A. By forming the lambda abstraction Az : A.M, we are constructing a function that takes any
input of type A (representing a proof of A) and produces an output of type B (representing a proof of B).
Thus, the lambda abstraction is the program-level construction that corresponds to the logical operation of
implication introduction, and it directly reflects the BHK interpretation of implication (Sato, 1997).

A—-B A
— (= FE

B ()
This rule says if we have a proof of A — B and a proof of A, we can derive a proof of B. The corresponding

rule in typed lambda calculus is function application:

I'rF:A—-B THFN:A
I''-FN:B

(= E)

This rule states: if we have a term F of type A — B and a term N of type A, then we can apply F' to
N to obtain a term F'N of type B. The BHK interpretation states that if we have a proof of A — B (a
method to transform proofs of A to proofs of B) and a proof of A, we can obtain a proof of B by applying
the method to the proof of A. Function application is the direct computational counterpart of this. The
term F’ represents the ‘proof transformation’ from A to B, and N represents a proof of A. Applying F' to N,
denoted F' N, performs the transformation and produces a term of type B, which is a proof of B. Function
application, therefore, is the program operation corresponding to logical implication elimination, mirroring
the BHK interpretation’s application of a proof method (Sgrensen and Urzyczyn, 2006). For conjunction

introduction:

A B
AANB

This rule states that if we have a proof of A and a proof of B, we can construct a proof of A A B. The typed

(AD)

rule is pairing:
'-M:A THEN:B

TF(M,N):AxB

(xI)

This rule states that if we have a term M of type A and a term N of type B, we can form a pair (M, N)
which has type A x B. According to the BHK interpretation, a proof of A A B is given by providing a proof
of A and a proof of B. Pairing in typed lambda calculus directly implements this. The term M is a proof
of A, and N is a proof of B. Forming the pair (M, N) combines these two proofs into a single entity that
represents a proof of A A B. Thus, pairing is the program construction corresponding to logical conjunction
introduction, and it directly reflects the BHK definition of conjunction proof (Sgrensen and Urzyczyn, 2006).

For conjunction elimination, we have two rules:

ANB ANB
T (AEB)

(AE3)

These rules state that if we have a proof of A A B, we can extract a proof of A or a proof of B. The

35

corresponding typed rules are projections:

LEPidxB 0 TEPAxB
TFm(P): A TFm(P):B °

These rules state: if we have a term P of type A X B, we can extract its first component 71 (P) of type A,
and its second component mo(P) of type B. The BHK interpretation of conjunction states that a proof of
A A B contains within it both a proof of A and a proof of B. Projections are the program operations that
extract these component proofs from a pair. If P is a term of type A x B (representing a proof of A A B),
then 71 (P) extracts the first component, which is a term of type A (a proof of A), and mo(P) extracts
the second component, a term of type B (a proof of B). Projections are therefore the program operations
corresponding to logical conjunction elimination, aligning with the BHK view that a proof of a conjunction
inherently includes proofs of its conjuncts (Sgrensen and Urzyczyn, 2006). For disjunction introduction, we

have two rules:
A

AV B AV B
These rules state that if we have a proof of A, we can prove AV B, and similarly if we have a proof of B, we

(V1) (VI2)

can prove AV B. The typed rules are injections, or disjunction introduction for types:

THM:A (+1)(1n1) I'+N:B
TFInl(M): A+ B DA T Inr(N): A+ B

(+12)(Inr)

Here, Inl and Inr are injection tags to distinguish whether we are injecting from the left type A or the
right type B into the sum type A + B. These rules state: if we have a term M of type A, we can inject it
as the left case In1(M) into the sum type A + Bj; if we have a term N of type B, we can inject it as the
right case Inr(N) into A + B. The BHK interpretation of disjunction states that a proof of AV B is given
by presenting either a proof of A or a proof of B, and indicating which one is being presented. Injections
in typed lambda calculus directly represent this. If we have a proof of A (term M), then In1(M) is a term
of type A + B which represents the proof of AV B because we have provided a proof of A and indicated
(using Inl) that it is the proof of the left disjunct. Similarly for Inr(N) from a proof N of B (Sato, 1997).
Injections are the program operations corresponding to logical disjunction introduction, reflecting the BHK

requirement to explicitly provide a proof of one of the disjuncts. For disjunction elimination:

This rule is more complex. It states that if we have a proof of AV B, and we know that assuming A leads to
a proof of C, and assuming B also leads to a proof of C', then we can conclude C. The corresponding typed

rule is case analysis, or disjunction elimination for types:

'rL:A+B To:AFM:C T,y:BEFN:C
'k cases L of Inl(z) = M | Inr(y) = N : C

(+E)(Cases)

This rule states: if we have a term L of type A+ B, and if under the assumption = : A we can derive a term
M : C, and under the assumption y : B we can derive a term N : C, then we can construct a case expression
cases L of Inl(xz) = M | Inr(y) = N of type C. The BHK interpretation for disjunction elimination tells

us that given a proof of AV B, and knowing how to obtain a proof of C' from a proof of A, and also how to

36 CHAPTER 7. THE CURRY-HOWARD CORRESPONDENCE

obtain a proof of C' from a proof of B, we can conclude C. Case analysis in typed lambda calculus exactly
captures this. The term L of type A+ B is the proof of AV B. The case expression examines which disjunct
was proven. If L is of the form Inl(x) (meaning A was proven, with proof x), we use the term M (which is a
proof of C' assuming A). If L is of the form Inr(y) (meaning B was proven, with proof y), we use the term N
(which is a proof of C' assuming B). Since we have a way to obtain a term of type C in either case, the case
expression as a whole produces a term of type C'. Case analysis is thus the program operation corresponding
to logical disjunction elimination, mirroring the BHK approach to handling disjunctive premises (Wadler,
2015). Finally, consider the rule for absurdity elimination (ex falso quodlibet):
L
1 (XF)
If we have derived falsehood L, we can derive any proposition A. The corresponding typed rule is empty

type elimination:
r'=z:0

'k aborta(Z) : A

(OE)

This rule states: if we have a term Z of type 0 (the empty type), we can bully it into becoming any type
A using an ‘abort’ operation, which we denote as abort4(Z). The BHK interpretation states that falsehood
L has no proof. If we were to somehow derive falsehood, it represents an impossible situation, from which
anything can be derived. The abort operation in typed lambda calculus reflects this. A term of type 0 ideally
should never exist in a well-typed program, as it represents a contradiction at the type level. However, if
such a term Z were available, then abort 4(Z) allows us to treat it as a term of any type A. This is because
in a constructive system, deriving falsehood is catastrophic, and from it, any proposition can be trivially
‘proven’ in a vacuous sense. The abort operation is the program operation that corresponds to logical
absurdity elimination, reflecting the BHK understanding that falsehood has no proof and implies everything.
So we see that for each inference rule of natural deduction, we have identified a corresponding operation in
simply typed lambda calculus. These program operations are not arbitrary; they directly mirror the proof
constructions, and they precisely implement the constructive meaning of logical connectives as defined by
the BHK interpretation (Sgrensen and Urzyczyn, 2006). Hence we derive the ‘proofs as programs’ aspect of
the Curry-Howard Correspondence and take a moment to admire the view before moving forward. Table
7.3 on the following page provides an overview of the connection between natural deduction and the STLC

as given by the Curry-Howard Correspondence.

Rule Type Natural Deduction (Propositional Logic) The Simply Typed Lambda Calculus (A —)
Logical Connective Formula Type Formula

Introduction Conjunction % Al Product FFFI—]W(ijlN;ﬂ ;JZ :BB x1

Elimination Conjunction r ;f;\lB AE1 r ll: ng NEs Product m xEq m xEq

Introduction Disjunction rr4 VI IFB Vi, Sum ,F FM:A +I; ,F M:B +15
'-AvB '-AvEB F'Finl(M): A+ B F'+inr(M): A+ B

Elimination Disjunction LraAvb l;’f_l ;C LBFC VE Sum Ir 1{\4|_: :;S—g ﬁ o?ﬁl(;)l ;]j\f |(fnr(ry7)y:>il_§ s +E

Introduction Implication % —I Function T I—F)’; j];[MA i 5 —I

Elimination Implication rra ?}_BB rra —E Function e :FAI—_]\>4?V :I;_ N:4 —E

Introduction Negation % -1 False T l_F)’\;: i]l_VIMAJ;) T 11

Elimination Negation w - False LM ZFAl_]\1;]\; NJ_ A= L 1E

Table 7.3: Correspondence between Natural Deduction and the Simply Typed Lambda Calculus

LE

38 CHAPTER 7. THE CURRY-HOWARD CORRESPONDENCE

Formulas-as-Types

Viewed from the perspective of formulas and types, we see that the type system of a programming language
can be seen as a logic. A type declaration can be viewed as a logical assertion, and type checking becomes
proof verification. If a program is well-typed, it signifies that the corresponding logical statement (its type,
interpreted as a proposition) is provable, and the program itself is a constructive proof of that statement.
The syntax and rules for manipulating proofs directly correspond to the syntax and rules for manipulating
programs (Constable, 1980). To describe this in the form of an analogy, consider logical propositions as
specifications for buildings. Here, a proposition such as ‘If it rains, then the roof will not leak’ is a specification
for a building. A proof of this proposition is like a construction plan that guarantees this specification is
met. In the Curry-Howard correspondence, the proposition ‘If it rains, then the roof will not leak’ is a type.
A proof of this proposition (the construction plan) is a program of this type — a program that takes ‘rain’ as
input (if it happens) and ensures ‘no leak’ as output. The type system aims to ensure that any program of
this type will indeed satisfy the specification, just as proof verification aims to ensure that a proof is logically
sound (Wadler, 2015).

Constructive Foundation

The Curry-Howard Correspondence is inherently linked to intuitionistic logic and constructive mathematics.
Intuitionistic logic differs from classical logic in its treatment of disjunction and existence. In intuitionistic
logic, to prove A V B, one must provide either a proof of A or a proof of B. Similarly, to prove 3z, P(z),
one must provide a specific value z and a proof of P(z) for that value. Classical logic, by contrast, allows
for non-constructive proofs, such as proofs by contradiction that might establish existence without explic-
itly constructing an object (Sgrensen and Urzyczyn, 2006). The BHK interpretation of logical connectives
provides a constructive semantics for intuitionistic logic. As we discovered above, the BHK interpretation
aligns perfectly with the ‘proofs as programs’ aspect of the Curry-Howard Correspondence. The descriptions
of proofs in BHK are essentially descriptions of computations. This is why the correspondence naturally
applies to intuitionistic logic. The STLC, and many type systems derived from it, are inherently constructive.
A well-typed program in such a system is guaranteed to compute a result, and this computational nature
mirrors the constructive nature of intuitionistic proofs. Classical logic, with its non-constructive aspects,
does not have such a direct correspondence with standard type systems. To represent classical logic within
a type-theoretic framework, one often needs to explicitly add features like classical axioms (e.g., law of
excluded middle) which breaks the direct, natural correspondence seen in the intuitionistic setting (Brogi,
2021).

Extending to Dependent Type Theories

The Curry-Howard Correspondence extends significantly when we move from propositional logic and the
STLC to predicate logic and more expressive type theories like dependent type theory. In predicate logic,
we have quantifiers V (for all) and 3 (there exists). Dependent type theory provides type constructors that
correspond to these quantifiers. For universal quantification Vz : A.P(z), where A is a type and P(z) is a
proposition depending on x of type A, the corresponding type constructor is the dependent product type,
often written as [[,. , B(z) or (z : A) — B(z), where B(x) is the type corresponding to P(x). A term
of type [[,., B(z) is a function that, for each value = of type A, produces a value of type B(x). This
directly mirrors the meaning of Vz : A.P(x): for every z of type A, P(x) holds. For existential quantification
Jdz : A.P(x), the corresponding type constructor is the dependent sum type, often written as >, B(z) or
(x : A) x B(z). A term of type > ., B(z) is a pair consisting of a value x of type A and a value of type
B(z). This corresponds to the meaning of 3z : A.P(x): there exists an x of type A for which P(z) holds, and
to prove it, we need to provide such an x and a proof of P(z) for that x (Dowek, 2012). Extending to the

39

CoC and again to ColC, propositions are indeed still types, and proofs are terms of these types. The type
system of CoC is designed such that type checking corresponds precisely to proof checking in a very rich logic
(McBride, 2000). Table 7.4 below summarises the connection between predicate logic and dependent type
theory at the level of typing judgements, and Table 7.5 on the next page extends this to their corresponding

inference rules.

Predicate Logic Dependent Type Theory

Component Formula Component Formula

Universal quantification | Vo : A.B(z) || Dependent Product Type | [[,., B(z)

Existential quantification | 3z : A.B(x) || Dependent Sum Type Yown B(2)

Table 7.4: Correspondence between Predicate Logic and Dependent Type Theory

Rule Type Natural Deduction (First Order Predicate Logic) AP System with Dependent Types
Component Formula Component Formula
trodiction Universal '+ P(z) o Dependent T,a: A+ M : Ba) -
'k VeP(z) I'FXa:AM :1a: A.B(a)
Quantification Product
o Universal T+ VzP(z) Dependent P-M:Iz:AB() THN:A
Elimination W VE TF MN : B(N) 11E
Quantification Product
. Existential T+ P(t) . Dependent T-M:A TFN:B(M) .
'k 32P(x) 'k {(M,N):Xz: AB(z)
Quantification Sum
L Existential I+ 32P(x) T,P(y)FQ Dependent | p\ prosys AB(e) Tya:Ab: Bla)F N: C((a,b))
Elimination) JE T et (a,0) M in N C((3)) YE
et (a,b) := M in N :
Quantification Sum
Identity
. . t1 =p t2
Introduct Equalit —F = IdI
Hiroduction duatity Tkt =t '+ refl, : Ida(a,a)
Type
Identity
. . [kt =t F'tp:Ida(a,b) T,x: A q:1da(a,z) - C(x,q)
El t Equalit =E IdE
Hnation ey T+ P(t;) — Plty) T+ J(a, b, p, \e.Aq.Clx, q)) : C(b, p)
Type

Table 7.5: Correspondence between Natural Deduction for First Order Predicate Logic and the AP System with Dependent Types

ov

HONHANOSHHY OO dYVMOH-AYYND HHL "2 H4.LdVHO

41

Programming Language Theory and Proof Assistants

The Curry-Howard Correspondence has very directly impacted programming language theory. Dependent
type systems, inspired by the correspondence, allow for the specification and verification of program be-
haviours, moving beyond basic type safety to functional correctness. More directly, the Curry-Howard
Correspondence is the foundational principle behind the development of proof assistants and interactive
theorem provers like Lean, Coq, Agda, and Idris. In these systems, users write programs that are simulta-
neously proofs. When a user constructs a term in these systems, the type checker verifies not only the type
correctness in the programming sense, but also the logical validity of the proof. The system ensures that if
a term is claimed to be a proof of a proposition (type), it is indeed a valid proof (Wadler, 2015). Peeking
into the next chapter and using Lean 4 as an example, to prove a theorem, one constructs a term of the
type that corresponds to the theorem. Lean’s type checker then verifies that the constructed term is indeed
of the specified type, thus verifying the correctness of the proof. This allows mathematicians and computer
scientists to formalise mathematical theories and verify the correctness of proofs with machine assistance.
The Curry-Howard Correspondence thus transforms proof construction into a form of programming and
proof verification into type checking, making formal verification accessible and practical (de Moura et al.,
2015). The development of these tools is a direct consequence of understanding the deep connection between
logic and computation revealed by the Curry-Howard Correspondence, enabling the rigorous formalisation

of mathematics and the development of verified software.

Part 11

The LIdVIN Proof Assistant

42

CHAPTER

Introduction

The development of Lean began at Microsoft Research in 2013 under Leonardo de Moura. The system arose
from a need for a proof assistant that could effectively combine formal mathematics with computational
efficiency. De Moura’s work focused on implementing dependent type theory in a way that would support
both programming and mathematical proof verification. The system has progressed through four major
versions. Lean 1 and 2 established the basic architecture, implementing a kernel based on dependent type
theory with a preliminary elaboration system (de Moura et al., 2015). Lean 3, released in 2017, introduced a
metaprogramming framework that allowed users to write custom automation within the system itself. This
version saw the beginning of mathlib, the mathematical component library that has been the bedrock for
mathematical formalisation in Lean. Lean 4, released in 2021, was a complete rewrite of the system. The
current version implements a new compiler architecture that improves performance while maintaining the
logical foundations of its predecessors. This version also introduces new programming capabilities, enhancing
Lean’s utility as both a proof assistant and a general-purpose programming language (de Moura and Ullrich,
2021). Since 2013, Lean has transitioned from a research project to an open-source system supported by an
international community of mathematicians and computer scientists. The system implements the Calculus
of Constructions with inductive types, building on the theoretical work of Martin-Lof, Coquand, and Huet.
Development of Lean now proceeds through community contribution, with major developments coordinated

through the Lean prover community (de Moura et al., 2015).

The Kernal The system’s architecture is built on a small kernel that implements the rules of dependent
type theory. The kernel is responsible for verifying that every proof term satisfies the rules of the type theory
behind it. The kernel’s design implements the ‘de Bruijn criterion’, meaning that the correctness of any proof
depends only on the correctness of this component. This makes sure that the more complex components
of the system, such as proof automation and user interface, cannot introduce logical inconsistencies. The
type-theoretical foundation of Lean builds on the Calculus of Inductive Constructions (de Moura and Ullrich,
2021). The system implements an infinite hierarchy of cumulative universes, beginning with the universe
Prop at level zero. This impredicative universe Prop contains propositions, while above it extends a sequence
of predicative universes Type 0, Type 1, and so forth. This universe structure allows Lean to represent both
mathematical propositions and computational types within its framework without running into Russell or
his paradox. The kernel’s operation is centered around the notion of definitional equality. When Lean is
asked to check if a term t has a type T, the kernel must determine if t : T is a valid typing judgment.
This involves not only checking the syntactic form of t and T but also considering their definitional equality.
Two terms are considered definitionally equal if they reduce to the same normal form through a process
of computation. This computation includes beta-reduction (applying lambda abstractions), delta-reduction
(unfolding definitions), and eta-reduction (simplifying functions). The kernel implements these reduction
rules and uses them to determine if two types are indeed the same, even if they are presented in different
syntactic forms. Furthermore, the kernel manages the environment of definitions and axioms. When a new

definition is introduced, the kernel stores it and allows it to be used in subsequent type checking through

43

44 CHAPTER 8. INTRODUCTION

delta-reduction. Similarly, when an axiom is asserted, the kernel records it as a primitive assumption. Axioms
are treated with particular care because they are points of potential inconsistency. The kernel itself does
not validate the consistency of axioms, as this is generally undecidable. Instead, it relies on the user to
ensure that the axioms introduced are consistent with each other and with the underlying logic. The kernel’s
responsibility is to faithfully apply these axioms in the type checking process, ensuring that if a proof relies

on an axiom, that axiom is indeed properly accounted for (Buzzard and Massot, 2021).

The Elaboration System The elaboration system in Lean 4 is the component responsible for processing
and transforming user-written Lean code into the formal, kernel-checkable terms of the underlying type
theory. It acts as a bridge between the more user-friendly syntax of Lean and the strict, minimal language
understood by the kernel. Elaboration is essentially a form of type inference and term reconstruction. The
user may provide incomplete or high-level specifications using implicit arguments, and the elaborator’s task
is to fill in the missing details and resolve ambiguities to produce a fully explicit term that the kernel can
then verify for type correctness. This process allows users to write Lean code that is more concise and closer
to mathematical notation than would be possible if they had to write everything in the fully explicit language
of the kernel, which is verbose to say the least. The main purpose of the elaboration system is to enhance
the usability and expressiveness of Lean. It achieves this by automating many of the tedious and repetitive
tasks associated with writing formal proofs and programs. For example, Lean allows for implicit arguments,
where type parameters or function arguments can be omitted and inferred by the elaborator based on the
context. This is helpful for writing code that resembles standard mathematical notation (or at least closer
than it could be), where many arguments are often implicitly understood. Furthermore, the elaboration
system handles features like operator overloading and coercion'®, allowing users to write code that is more
natural and less cluttered with explicit type annotations and conversions. The elaborator aims to make Lean
code easier to write, read, and maintain, while still ensuring that everything ultimately reduces to a term
that can be verified by the kernel (de Moura and Ullrich, 2021).

Type inference is the main task of the elaborator, where it deduces the types of expressions based on the
context and the types of known variables and functions. Implicit arguments are resolved by the elaborator by
searching for suitable values that satisfy type constraints. Overloading resolution determines which specific
function or operator is intended when multiple options are available based on the types of the arguments.
Coercions are automatically inserted by the elaborator to bridge type mismatches, for example, implicitly
converting a natural number to an integer when required. The elaborator also interacts closely with the kernel
during this process. It repeatedly queries the kernel to check the types of partially elaborated terms and uses
this information to guide the elaboration process. If the elaborator encounters an error or cannot resolve
ambiguities, it reports an error to the user, indicating where and why the elaboration failed. Successfully
elaborated terms are then passed to the kernel for final type checking, ensuring the overall soundness of the
system (Avigad et al., 2023).

Metaprogramming and Mathlib The metaprogramming framework allows users to write programs in
Lean that construct or manipulate proofs. This framework provides a monadic interface for tactic program-
ming, enabling controlled access to the proof state and elaborator functionality. Through metaprogramming,
users can implement custom automation while preserving the system’s logical guarantees (de Moura and
Ullrich, 2021). The standard library, mathlib, implements definitions and theorems organised in a hierarchy
that is intended to reflect mathematical structure (albeit a little tricky to navigate on first glance). This

library incites hope that this system has the capacity for large-scale formalisation, having incoorporated solu-

LOperator overloading allows the same operator symbol (such as + or *) to have different meanings depending on the types
of its operands. Coercion is the automatic conversion of a value from one type to another (such as a natural number to an
integer), typically to make operations type-correct.

45

tions for dependency management and consistency maintenance. Lean’s approach to definitions and proofs
encourages conservative extension principles, which helps to contain some kind of redundency explosion
across the internet. New definitions must be shown to be well-formed and consistent before being accepted
into the library, while axioms remain carefully controlled to maintain logical consistency. This design means
that the formalisation of mathematics can steadily grow, while preventing the introduction of contradictions
(Avigad et al., 2023). Through a combination of architecture and community support, Lean provides a foun-
dation for mechanical verification of mathematical proofs. The system transforms mathematical proof into
a concrete, verifiable process while maintaining the expressivity needed for mathematical reasoning, which
makes it both useful and fun to use (Buzzard and Massot, 2021). The remainder of this section is referenced
from the documentation directly, and a combination of (de Moura and Ullrich, 2021; de Moura et al., 2015;
Lean Development Team, 2024; Avigad et al., 2023; Buzzard and Massot, 2021).

CHAPTER

Syntax

Lean’s syntax follows naturally from its roots in dependent type theory and the Curry Howard Correspon-

dence where we observe a cunning relation between propositions and types. Extending the correspondence

to Lean syntax we obtain the equivalent statements shown in Table 9.1 below:

Logic STLC Lean 4
N (p,q) And.intro p q
NE) m t And.left t
NE, o t And.right t
— 1 Ap: P. Ap: P =
— F (ft) (f ©)
VI ml p Or.intro_left <right-disj> p
VI, mnr p Or.intro_right <left-disj> p
VE cases t f g Or.elim t f g

Table 9.1: Syntax correspondence between propositional logic, STLC, and Lean 4

We begin our document by declaring a proposition, say P, Q, R, and S as types in the universe Prop, with
each proof as a term inhabiting that type. This will declaration remain throughout the document, so that

it does not need to be declared for every statement individually.

variable (P Q R S : Prop)

Lean makes generous use of keywords, which are special reserved words that have specific meanings and

functions, such as the def keyword, which is the basic syntax for definitions and introduces new objects.

The general syntax for using the def keyword is

def name {universe_params} (params)

: type := body

Where name is the identifier, universe_params gives optional implicit universe parameters, params is zero

or more explicit parameters with their types, type specifies the return type, and body contains the imple-

mentation. To see this in action, the definition of function composition can be expressed as:

def compose (g : Q — R) (f
A x =
g (f x)

: P — Q)

: P> R :=

The type system in Lean directly corresponds to logical propositions through the Curry-Howard correspon-

dence. Universal quantification is expressed using the Pi-type notation, written in Lean as (x : o] —

46

w N

47

X, where x is a variable of type o and (8 x is a type that may depend on x. This corresponds to the math-
ematical notation Vx:«, B(x). The arrow type (—) represents simple function types and logical implication
when working with propositions. For example, a basic theorem about function properties can be stated as:

theorem comp_assoc (h : R - S) (g : Q - R) (£ : P - Q

compose h (compose g f) = compose (compose h g) f :=
rfl

-

N}

Existential quantification is given using Sigma-types, written as Exists or 3 in Lean, and rfl provides
a proof that two definitionally equal terms are equal (more on this soon). These constructions allow us
to express statements about the existence of mathematical objects with specific properties. Consider this
fundamental example demonstrating existential quantification:

def has_inverse {a : Type} (f : @« — «) : Prop :=
dg:a—a, Wx,g(Ex =3 A Vx, £f(gx)=x)

@ N

Function application in Lean follows standard mathematical notation, where £ x denotes the application of
function f to argument x. Note our first use of an implicit parameter, since o wasn’t declared as a variable
of type Prop at the beginning of the document. Lean supports both prefix and infix notation, allowing
expressions to be written in the mathematicians’ flavour of choice. The syntax for lambda abstractions uses
the A symbol followed by the parameter and body, corresponding to the mathematical notation z — f(x).
For example:

def square : Nat — Nat :=

An =>
n*n

N

Type declarations in Lean serve dual purposes: they act as both computational specifications and logical
propositions. When working with propositions, the colon-equals notation (:=) provides definitions, while the
colon notation (:) specifies types or propositions without providing proofs. This distinction is important for

understanding how Lean separates specification from implementation:

def is_even (n : Nat) : Prop := 3k : Nat, n =2 - k

5 theorem four_is_even : is_even 4 :=

(2, rfl)

The syntax for dependent types allows for precise specification of mathematical structures. A dependent
function type (x : «a) — [x represents both universal quantification in logic and dependent functions in

mathematics, where the return type Sz may depend on the value of the argument x.

CHAPTER

Proof Terms

Proof terms are the Lego™ blocks of formal verification in Lean and it’s type-theoretic kernal. A proof term
is an object that provides explicit evidence for the truth of a proposition, constructed within the bounds
of dependent type theory. When we construct a proof term in Lean, we are simultaneously creating both
a program and a formal proof whose correctness can be mechanically verified. These terms are a precise,
unambiguous representation of logical reasoning, where each inference step corresponds to a specific typed
construction. Proof terms are the most primitive mechanism through which Lean can interact with the user
to verify expressions, and are generally too verbose to use on their own. The working mathematician should
know how they work, build some for themselves to get a feel for them, and then read the next chapter for
the next installment. The BHK interpretation shines here, as we see constructive logic permeate the very
foundation of how we form valid expressions in propositional and predicate logic. We first consider a basic
logical implication:

theorem modus_ponens {p q : Prop} : p = (p — q) — q :=

A (hp : p) (hpg : p = q) =>
hpq hp

In this example, the proof term A (hp : p) (hpq : p — @) => hpq hp directly corresponds to the
BHK interpretation and natural deduction proof. The lambda abstraction A hp introduces the assumption
p, while hpq hp represents the application of the implication to our assumption, delivering q. Note the use
of the deduction theorem here, where the antecedent of an implication in the conclusion is taken over to the
left-hand side of the turnstile (premises) and then later discharged. This is all happening very quickly here
in Lean, as oppoised to the multi-step process we performed by hand in a natural deduction proof tree. For
conjunction operations, proof terms also mirror the logical structure we saw in natural deduction:

theorem and_comm {p q : Prop} : p A g - q A p :=

Ah=>
(h.right, h.left)

O R R

Here, h.1left and h.right access the individual components of the conjunction, while ¢h.right, h.left)
constructs a new conjunction with the components reversed. This corresponds to the natural deduction
rules for conjunction elimination and introduction, as well as the BHK requirement that both conjuncts be
constructed in order to validate their union. The correspondence extends to predicate logic too. Consider
existential quantification:

theorem exists_and_comm {« : Type} {p q : @ — Prop} :
Fx,pxAgx) = (Ix, gx Apx):=
Ah=>
match h with
| (x, (hp, hq)) =>
(x, (hq, hp))

48

N

49

This proof term demonstrates pattern matching on an existential witness. The pattern {x, <hp, hq))
destructures the existence proof, allowing us to construct a new witness with the conjunction components
reversed. Universal quantification makes use of dependent function types:
theorem forall_and_comm {« : Type} {p q : @ — Prop} :
VMzx,pxAqgx) > Vx,9x Apzx) :=
Ahx =
((h x).right, (h x).left)

w N

Here, the proof term A h x, {(h x).right, (h x).left) represents a function that takes a proof of the
universal statement and produces a proof of the commuted statement for any given x. We see that the
construction of proof terms follows rules that mirror natural deduction such that introduction rules corre-
spond to lambda abstractions and pair constructions, elimination rules correspond to function applications
and projections, and structural rules are implemented through variable usage and substitution. For example,
consider the transitivity of implication:
theorem imp_trans {p q r : Prop} : (p - q) - (@ - r) = (p — r) :=

A hpq hqr hp =>

hqgr (hpq hp)

This proof term demonstrates function composition, where hpq hp produces a proof of q, which is then used
by hqgr to produce a proof of r. The structure directly corresponds to the natural deduction proof using
implication elimination (modus ponens) twice.

IO O

CHAPTER

Tactic Mode

While proof terms provide an exact representation of mathematical reasoning, Lean offers a more intuitive
approach to proof construction through step-by-step refinement of proof goals with mini-programs called
tactics. Rather than directly constructing proof terms, tactics allow mathematicians to develop proofs in-
crementally by transforming proof states through a sequence of well-defined operations where the end result
is always a proof term, but the route feels a bit more as though one is writing a mathematical proof rather
than talking directly to the kernal. Each tactic implements a specific proof technique—such as introducing
hypotheses, applying theorems, or decomposing complex statements —and automatically generates the cor-
responding proof terms. This abstraction layer allows mathematicians to focus on the high-level structure
of their proofs while Lean manages the underlying formal details. Tactic mode bridges the gap between
informal mathematical practice and formal verification by providing a more natural interface for proof de-
velopment. When constructing proofs in tactic mode, mathematicians work with a goal state that displays
current hypotheses and proof requirements, applying tactics that systematically reduce complex goals to
simpler subgoals until the proof is complete. Tactics are a very useful tool in the mathematician’s toolbelt
for formalising proofs by enabling an intuitive, goal-directed approach to proof construction while minimising

the verbosity incurred with proof term construction directly.

In tactic mode, proofs begin with an initial goal state that presents the proposition to be proved along

with any available hypotheses. Consider a basic example:

theorem and_swap (h : P A Q) : Q AP := by
cases h with
| intro hp hq =>
constructor
exact hq
exact hp

S S R R

Here, the keyword by begins tactic mode. The cases tactic calls the conjunction hypothesis, while constructor
builds the structure of the conclusion. The exact tactic completes atomic goals using available hypothe-
ses. Each tactic application transforms the current state into a new state, potentially generating subgoals.
Consider implication introduction:
theorem imp_tramns : (p - q@ — (@ - r) = (p — r) := by
intro hpq hqr hp
apply hqr

apply hpq
exact hp

The intro tactic introduces hypotheses into the local context. Subsequently, apply performs backward
reasoning, reducing goals through hypothesis application. Each step transforms the proof state systematically

until completion.

50

11.1. TACTIC CATEGORIES 51

11.1 Tactic Categories

Most tactics can be organised into categories, and although this is not a definite systematisation, it is worth

discussing some of the main ones for ease of starting out.

Introduction tactics Introduction tactics manage how propositions and hypotheses enter the proof state.
These tactics convert goals into workable forms by bringing assumptions into the local context. For example,
intro manages implications and universal quantifiers to create named hypotheses (think: deduction theo-
rem), while constructor builds frameworks for compound statements like conjunctions and disjunctions.
Introduction tactics typically appear at the start of proofs, where they transform the initial goal into a state
containing the necessary hypotheses and structural components for subsequent proof steps. For example,
when proving an implication P — Q, the intro tactic converts the goal into a context where P is a hypothesis
and Q becomes the new goal to prove. Consider the use of introduction tactics on the following sequent:
theorem and_implic : (P AQ - R) — (P - Q — R) := by

intro h hp hq

apply h

constructor

exact hp

exact hq

Elimination Tactics FElimination tactics in Lean provide methods for using and decomposing complex
hypotheses into their constituent parts. The main elimination tactics, such as cases, destruct, and elim,
break down compound propositions like conjunctions, disjunctions, or existential statements into simpler
components that can be directly used in proofs. For example, when working with a conjunction P A Q, the
cases tactic separates it into individual hypotheses for P and Q. Similarly, when handling a disjunction P V
Q, elimination tactics create separate proof branches for each possibility. These tactics should look familiar
after learning about the elimination rules from natural deduction in Section 3. We see this in action through
the following proof:
theorem or_and_distrib {p q r : Prop} : pV (@q Ar) — (p Vg A (pV) :=by
intro h
constructor
cases h with
| inl hp => left; exact hp
| inr hqr => right; exact hqr.left
cases h with

| inl hp => left; exact hp
| inr hqr => right; exact hqr.right

Rewriting Tactics Rewriting tactics in Lean manipulate expressions by applying equalities and equiva-
lences within goals or hypotheses. Here we see our first example of where seemingly similar commands have a
very specific operation at a machine level that the proof-artist should be savvy to. The most commonly used
rewriting tactic, rw, substitutes terms according to equality statements, while variants like simp perform a
near-same action in a subtly different way. As mentioned in 10, the reflexive rfl tactic proves equality too,
although rfl and simp operate at fundamentally different levels under the hood. The rfl tactic performs
a direct check for definitional equality, examining whether two terms reduce to exactly the same normal
form in the kernal through g-reduction. It succeeds only if terms are computationally identical without re-
quiring any further logical reasoning. In contrast, simp implements a more computationally heavy rewriting
system that applies a collection of lemmas and equations (defined by the user) from the local context as
‘simp’-tagged theorems. It performs ordered term rewriting using these rules, potentially exploring multi-

ple transformation paths to reach its goal. Where rfl only considers definitional equality, simp can verify

52 CHAPTER 11. TACTIC MODE

equality using its preconfigured rule set. This means that while rfl is faster due to its lighter computational
requirements, simp is more powerful but computationally intensive as it searches through possible rewriting
sequences. While subtle, it is these differences in ‘under-the-hood’ processing that the mathematician may
become familiar with over time when deciding which tactic to use in what circumstance.

When provided with an equality a = b, these tactics both identify occurrences of a in the current goal and
replace them with b, or vice versa when used with symmetry. Rewriting can be very specifically controlled
through explicit locality annotations, allowing mathematicians to specify exactly where substitutions should
occur. These kinds of tactics often show up in algebraic proofs where routine term manipulation is required,
such as in ring calculations or when normalising expressions to match known theorems. We see a basic
example in the following proof:

theorem add_zero (n : Nat) : n + 0 = n := by
induction n with
| zero => rfl
| succ n ih =>

rw [nat.add_succ]
rw [ih]

N

Automation Tactics Automation tactics in Lean combine multiple reasoning steps into single commands
that attempt to solve goals automatically. The first automation tactics to learn should be aesop, which
performs automated proof search using configurable rule sets, and tauto, which handles propositional tau-
tologies. These tactics apply built-in short-cuts and decision procedures to resolve goals without requiring
explicit step-by-step guidance (very helpful, and fun), though their success depends on the complexity of the
goal and the available lemmas in scope (as well as the guiding hand of the artist). Mathematicians will find
merit in employing automation tactics for straightforward logical deductions or when dealing with goals that
would require monotonous mechanical steps to prove manually, though they should be used judiciously as
their behavior can become unpredictable with complex goals. Consider the following example: Automation
tactics combine multiple reasoning steps:

theorem simple_auto {p q : Prop} (hl : p) (h2 : p — q) : q := by
aesop

0 N

Versus the (slightly) more verbose

theorem simple_explicit {p q : Prop} (h1 : P) (h2 : P - Q) : Q := by
apply h2
exact hil

As proofs build in complexity, the number of lines of code spared will obviously increase at a rate that

justifies their use.

Working with Tactics Tactics make the Lean environment feel more flexible while still retaining it’s
formal rigor. Proof scripts can be formed in as many ways as a pen-and-paper proof — sometimes dealing
with subcases individually, sometimes rewriting an expression repeatedly, and sometimes calling procedures
that do arithmetic or logical reasoning automatically. The end product is always a proof term that Lean
checks for correctness on the foundation of dependent type theory. Tactic-based proofs can seem complicated
at first (especially when trying to decide which one to choose!) and can be less transparent if each step is
not documented. However, they empower the user to work with much more complicated arguments without
the thousands of lines of code that an equivalent proof all made from explicit proof-terms would induce, and
large or branching case analyses in a structured and interactive way. Beginners will likely find themselves

switching between the direct use of exact or apply for small steps and making use of more involved tactics

11.1. TACTIC CATEGORIES 53

such as simp, or aesop when more familiar with the basics. Over time, different approaches feel like an
intuitive place to start, and combinations of tactics will spring to mind when looking at a theorem. The user
might enjoy finding ways to mix short proofs that are more coherent with occasional blasts of automation

when the details are too tedious.

The best approach to becoming confident with tactics is to experiment with them and look at how Lean
displays intermediate goals in the infoview with each tactic. One approach might be to rewrite a proof with
fewer lines by letting the system do more automation, or alternatively use more explicit steps for clarity.
Since the statements proved by tactics reduce internally to the same proof terms no matter what path is

taken to get there, the difference is a matter of taste and efficiency.

CHAPTER

Formalising Mathematics

The transition from working with atomic propositions to formalising mathematical structures in Lean is first
and foremost a process of translating mathematical concepts, definitions, and proofs into a language founded
in dependent type theory rather than the typical set theory. Throughout this chapter, we use the previous
deocumentation references along with (Macbeth, 2021; Yan and Hanna, 2023). For mathematicians familiar
with type theory, constructive logic, and hierarchical abstraction, this transition is more straightforward,
but any mathematician will become familiar and well-versed with time and practice. As with pen-and-
paper mathematics, the formalisation process beings with precise definitions. Lean’s type system permits
the expression of mathematical structures through typeclasses and structures, which takes on the form of
axioms and operations. For example, a group can be defined as a typeclass bundling a carrier type, a
binary operation, an inverse, and proofs of associativity, identity, and inverse laws. Such definitions mirror
the standard mathematical practice of specifying structures via their constituent components and axioms.
Similarly, properties like commutativity or continuity are encoded as predicates over types, often expressed
using dependent function types or inductive propositions. As with the sequent proofs from Section 11,
mathematical proofs in Lean are generally constructed using tactic mode, which will be translated to proof
terms for the kernal to verify. While tactic proofs for propositional logic rely on basic logical steps (e.g.,
intro, apply, exact), proofs of mathematical objects require domain-specific tactics and automation. For
example, in abstract algebra, the simp tactic simplifies expressions using ring axioms, while norm_num verifies
numerical inequalities in analysis. The rw tactic rewrites terms using equalities or equivalences, which is the
basis for manipulating algebraic expressions or topological properties. These tactics abstract low-level proof

term construction, allowing mathematicians to focus on high-level reasoning and the direction of the proof.

12.1 The Natural Numbers

Through inductive types, we will now define the natural numbers from first principles, implement basic
arithmetic operations, and prove some important properties step by step. We begin by creating an inductive
type to represent the natural numbers. The definition mirrors Peano’s axioms, so we see an alternative
approach from a dependent type-theoretic perspective to derive the natural numbers from first principles:
inductive myNat where
| zero : myNat

| succ : myNat — myNat
deriving Repr

This definition introduces two fundamental constructors: zero, which represents 0, and succ (the successor
function), which given any natural number n produces n + 1. The deriving Repr allows our type to be
displayed in a readable format by enabling automatic generation of string representations for those types.
To make our natural numbers compatible with Lean’s built-in numerical notation, we need to create a bridge
between Lean’s pre-defined Nat type and our myNat type. This can be accomplished in two steps. First, we

54

12.1. THE NATURAL NUMBERS %)

define a conversion function:

def natToMyNat : Nat — myNat
| O => myNat.zero
| n + 1 => myNat.succ (natToMyNat n)

N

Then, we implement the 0fNat typeclass to allow literal numbers:

instance (n : Nat) : 0fNat myNat n where
ofNat := natToMyNat n

-

N}

This allows us to write numbers such as 2, 3 instead of succ (succ zero).

Addition Addition is defined recursively based on the second argument:

def add (m n : myNat) : myNat :=
match n with
| zero =>m
| succ n => succ (add m n)

N}

This definition says that adding zero to m gives m, and that adding succ n to m gives succ (m + n). To

use the familiar + notation, we implement the HAdd typeclass:

instance : HAdd myNat myNat myNat where
hAdd := add

We then prove some fundamental properties of addition. Each proof builds on previous results. First, we

prove how addition interacts with succ:

1 theorem add_succ (m n : myNat) : m + (succ n) = succ (m + n) := by rfl
2 theorem succ_add (m n : myNat) : (succ m) + n = succ (m + n) := by
3 induction n with
| | zero => rfl
5 | succ n ih => rw [add_succ, ih, add_succ]
Then, we establish properties about adding zero:
1 theorem add_zero (n : myNat) : n + zero = n := by rfl
theorem zero_add (n : myNat) : zero + n = n := by
3 induction n with
| | zero => rfl
5 | succ n ih => rw [add_succ, ih]
Finally, we prove associativity and commutativity:
theorem add_assoc (a b ¢ : myNat) : (a+b) +c=a+ (b +c) := Dby
induction c¢ with
| zero => rw [add_zero, add_zero]

IO U

| succ ¢ ih => rw [add_succ, add_succ, ih, <-add_succ]

theorem add_comm (a b : myNat) : a + b = b + a := by
induction b with
| zero => rw [add_zero, zero_add]
| succ b ih => rw [add_succ, succ_add, ih]

Multiplication Multiplication is defined recursively in terms of addition:

def mul (m n : myNat) : myNat :=
match n with
| zero => zero
| succ n => add m (mul m n)

instance : HMul myNat myNat myNat where
hMul := mul

N

56 CHAPTER 12. FORMALISING MATHEMATICS

We then prove essential properties of multiplication, following a similar pattern to addition:

theorem mul_zero (n : myNat) : n * zero = zero := by rfl
theorem mul_succ (a b : myNat) : a * (succ b) = a + (a * b) := by rfl
theorem zero_mul (n : myNat) : zero " n = zero := by

induction n with
| zero => rfl
| succ n ih => rw [mul_succ, zero_add, ih]

N}

Finally, we implement exponentiation using multiplication:

def exp (base exponent : myNat) : myNat :=
match exponent with
| zero => succ zero
| succ exponent => mul base (exp base exponent)

PO R

This inductive construction provides a complete foundation for natural number arithmetic, with all the
essential operations and their properties formally verified. Each component builds on previous definitions
and theorems, creating a mathematical structure that mirrors the way we traditionally understand natural

numbers, but with the added benefit of machine-checked proofs of correctness.

Recommended Extension Some natural extensions to this construction include implementing inequal-
ities between natural numbers, proving cancellation laws for addition and multiplication, establishing the
distributive law, and proving properties of exponentiation such as (a™)™ = a™”) | Next, one might practice
defining division with remainder, implementing Fuclidean division, and proving basic number theory results

like the uniqueness of prime factorisation.

12.2 Algebraic Structures

The formalisation of abstract structures in Lean 4 can make use of both the structure and type class
systems. Here we will demonstrate how to use type classes to define the algebraic hierarchy of multiplicative
and addtive groups. Building on our experience with inductive types for natural numbers, we now extend to
more abstract structures by defining operations and their properties as type class fields. Type classes in Lean
allow us to construct a hierarchy that mirrors the mathematical progression from magmas through to groups,
having the structure for both operations and axioms as computable functions and propositions respectively.
The overall approach involves defining each structure as a type class that extends simpler structures, with
operations and axioms expressed in dependent type theory. Lean’s type class inference mechanism then
automatically handles the inheritance relationships, allowing us to build ever-growing algebraic structures
while maintaining consistency. We’ll start with the multiplicative group structure first, as it establishes the

pattern we’ll follow throughout.

Multiplicative Groups First, we establish the most basic structure - a magma, which is simply a set

with a binary operation:

class mul (: Type u) where
mul : — —

infix : 70 "-" => mul.mul

This code introduces a type class mul parameterisd by a type « in universe level u. The universe level
parameter allows our structure to work at any type level in Lean’s hierarchy. The class contains a single field
mul that takes two arguments of type a and returns a value of type «, representing our binary operation.
The infix declaration creates custom notation, allowing us to write a - b instead of mul.mul a b. The

precedence level 70 ensures proper parsing order in expressions with multiple operators —higher numbers bind

N

12.2. ALGEBRAIC STRUCTURES o7

more tightly. The unicode symbol - is used instead of * to avoid confusion with Lean’s built-in multiplication.

Next, we define a semigroup by adding the associativity property:

class mulSemigroup (: Type u) extends mul where
mul _ assoc : Vabc:, (a-b)-c=a- (- c)

N

The extends keyword indicates inheritance from the mul class. The field mul_assoc represents the associa-
tivity axiom as a proposition that must be proven for any instance of mulSemigroup. The V quantifier means
this must hold for all elements a, b, ¢ in «. Before defining a monoid, we need a class for structures with

an identity element:

class hasOne (: Type u) where
one :

0 N

This simple class provides a distinct element that will serve as the multiplicative identity. With this in place,
we can define a monoid:
class mulMonoid (: Type u) extends mulSemigroup , hasOne where

onemul : Va: , one-a=a
mul one : Va: , a-one = a

The monoid class extends both mulSemigroup and hasOne, adding axioms that specify that the identity
element behaves correctly on both left and right multiplication. Note that we need both one_mul and
mul_one as separate axioms since we haven’t assumed commutativity. Now we define the multiplicative
group structure by extending the monoid with inverse elements:
class mulGroup (: Type u) extends mulMonoid where

inv : —

mul_left_inv : V a : , (inv a) - a = one

mul_right_inv : V a : , a - (inv a) = one

N}

The mulGroup class introduces an inverse function inv that maps each element to its multiplicative inverse.
We require both left and right inverse properties since we haven’t yet assumed commutativity. The type
signature inv : « — « tells Lean that inv is a function from « to itself. For abelian groups, we extend
the group structure with commutativity:

class mulAbelian (: Type u) extends mulGroup where
mul comm : Vab:,a-b=>b-a

N

Now we enter a namespace to organise our theorems about multiplicative groups:

namespace mulGroup
open mul

open mulSemigroup
open hasOne

open mulMonoid

The namespace command creates a context for our theorems. The open commands make the operations
and properties from our type classes available without qualification. This allows us to write one instead
of hasOne.one, for example. Our first theorem proves that the inverse of an inverse returns the original
element:

theorem mul_inv_of_inv (: Type u) [mulGroup]
V a: , (inv (inv a)) = a := by

intro a
calc
(inv (inv a)) = one - (inv (inv a)) := by
rw [one_mul]
_ = (a - (inv a)) - (inv (inv a)) := by

rw [mul_right_inv]
(a) - ((inv a) - (inv (inv a))) := by

o8

CHAPTER 12. FORMALISING MATHEMATICS

rw [mul_assoc]

= a - one := by
rw [mul_right_inv]
= a := by

rw [mul_one]

Here, the theorem statement takes a type a and requires an instance of mulGroup « (indicated by the

square brackets). The tactic intro a brings the universally quantified variable into our context. The calc

block allows us to construct an equational proof, where each step is justified by rewriting with a previously

established property. The underscore indicates that intermediate expressions will be inferred. The rewrite

tactic, rw applies equalities left-to-right. We progress with theorems about uniqueness of inverses. These

theorems establish that group inverses are unique and work in both directions:

theorem mul_unique_inv (: Type u) [mulGroup]

VYV ab:

>

(b - a=one) - b= (inv a) := by

intros a b

intro t
calc
b

= Db - one := by
rw [mul_one]
b - (a - (inv a)) := by
rw [mul_right_inv]
= (b - a) - (inv a) := by
rw [mul_assoc]
= one - (inv a) := by
rw [t]
= (inv a) := by
rvw [one_mul]

This theorem proves that if an element b acts as a left inverse for a, then b must equal the canonical inverse of

a. The proof structure works by taking arbitrary elements a and b and a hypothesis t that b-a = one. It then

uses a calculational proof to transform b into inva. Each step is justified by either the monoid properties

(mul__one, one_mul) or group properties (mul_right_inv). The associativity property mul_assoc allows us

to rearrange the parentheses. The symmetric version proves uniqueness from the right:

theorem mul_inv_unique (: Type u) [mulGroup]

VYV ab:

>

(a - b =one) - b= (inv a) := by

intros a b

intro t
calc
b

= one - b := by
rvw [one_mul]

= ((Anv a) - a) - b := by
rw [mul_left_inv]
= (inv a) - (a - b) := by

rw [mul_assoc]

= (inv a) - one := by
rw [t]

= (inv a) := by
rw [mul_one]

O N S

The final multiplicative group theorem proves the ‘socks and shoes’ property —that the inverse of a product

is the product of the inverses in reverse order:

theorem mul_shoes_and_socks (: Type u) [mulGroup]

Vab:

>

((inv b) - (inv a) = inv (a - b)) := by

intros a b

have t
calc

(a - b) -

((a - b) - ((inv b) - (inv a)) = one) := by

((Anv b) - (inv a)) = a - ((b - (inv b)) - (inv a)) := by
rw [mul_assoc, <mul_assoc b]

12.2. ALGEBRAIC STRUCTURES 59

a - (one - (inv a)) := by
rw [mul_right_inv]
= a - (inv a) := by
rw [one_mul]
= one := by
rw [mul_right_inv]
exact mul_inv_unique (a - b) ((inv b) - (inv a)) t

N

This proof introduces a new technique: the have tactic, which lets us prove an intermediate result before
using it in our main proof. Here we prove that (a - b) - ((invb) - (inva)) = one, and use mul_inv_ unique to

conclude that (inwvbd) - (inva) must be the inverse of (a - b).

Additive Groups Moving to additive groups, we follow the same structural pattern but with different

notation and terminology. First, we establish the basic additive magma structure:

class add (: Type u) where
add : — —

infix : 65 "+" => add.add

N

The structure is identical to the multiplicative case, but we use lower precedence (65 vs 70) since addition
traditionally binds less tightly than multiplication. The + notation is more conventional for addition than
the - we used for multiplication. For the additive identity element, we define:

class hasNone (: Type u) where
Zero :

N

Note that while mathematically zero and one serve analogous roles (in the sense that they are an identity
element), we maintain separate type classes to preserve the distinction between additive and multiplicative
structures. This separation is important for defining more ellaborate algebraic structures like rings later, and
it also just helps us to think about the structures better with the conventional notation for each structure (i.e.
one for multiplication and zero for addition). The additive semigroup structure introduces associativity:

class addSemigroup (: Type u) extends add where
add_assoc : Vabec:, (a+b)+c=a+ (b+c)

w N =

The additive monoid combines the semigroup with the zero element:

class addMonoid (: Type u) extends addSemigroup , hasNone where
zero_add : Va : , zero + a = a
add_zero : V a : , a + zero = a

N}

The additive group introduces the negation operation for inverses:
class addGroup (: Type u) extends addMonoid where
neg : —
neg_add : V a : , (neg a) + a = zero

prefix: 60 "-" => addGroup.neg

The prefix notation for negation uses precedence 60, ensuring that —a + b is parsed as (—a) 4 b rather than

—(a+b). We create a namespace for additive group theorems:

namespace addGroup
open add

open addSemigroup
open hasNone

open addMonoid

O

60 CHAPTER 12. FORMALISING MATHEMATICS

Now we will define some basic theorems for additive groups. Like in the multiplicative case, the below open
commands make the relevant operations and properties available without qualification within our theorem
proofs. The namespace keeps our additive group theorems organised and separate from their multiplicative
counterparts.

namespace addGroup

open add

open addSemigroup

open hasNone
open addMonoid

We first demonsrate that the addition of an element and its inverse culminates to zero (analogous to the

right inverse property for multiplicative groups). In Lean, we encode this as:

theorem add_neg (: Type u) [addGroup]

Va:,at+ (-a)=zero := by

intro a

calc

a+ (-a) =zero + (a + (- a)) :=by

rw [zero_add]

= ((- (-a) + (-a)) + (a+ (-a)) :=by
rw [neg_add]

_ =(-(-a)+ ((-a + (a+ (-a)) :=by
rw [add_assoc]

= (- (- a) + (zero + (- a)) := by
rw [<-add_assoc (- a), neg_add]

= (- (-a)) + (-a :=by
rw [zero_add]

= zero := by
rw [neg_add]

N

The theorem statement uses type parameters similar to our multiplicative group theorems. The square
brackets around [addGroup] indicate a type class instance requirement —Lean must know that « has an
additive group structure. The proof uses the calculational style with the calc block, where each step is
justified by rewriting with previously established properties. Note the use of < in one step to apply the
associativity property in reverse. Next, we prove that inverses are unique in additive groups:

theorem add_inv_unique (: Type u) [addGroup]
Vab:, (a+b=2zero) - b= (-a) :=by
intros a b
intro t
calc
b = zero + b := by
rw [zero_add]
_=((-a) +a) +b :=Dby
rw [neg_add]
=(-a) + (a+Db)
rw [add_assoc]

by

_ = (- a) + zero := by
rw [t]
_=(-a) :=by

rw [add_zero]

This theorem shows that if adding two elements gives zero, then one must be the negative of the other. The
theorem takes three arguments: the type «, an instance of addGroup for «, and a proof that a + b = zero.
The conclusion states that b must equal —a. The proof then uses calc again, with each step justified by
properties from our additive group structure. The intros tactic brings both variables into scope, while
intro t names our hypothesis that a + b = zero. The next theorem proves uniqueness from the other

direction:

1
2
3
4

12.2. ALGEBRAIC STRUCTURES

theorem add_unique_inv (: Type u) [addGroup]

Vab:, (b +a=zero) - b= (-a) :=by
intros a b

intro t

calc

b =Db + zero := by

rw [add_zero]
b+ (a+ (- a))
rw [add_neg]
_ =((M©+a + (-a) := by
rw [add_assoc]

|
]
]
o’
<

_ = zero + (- a) := by
rw [t]
_ = (-a) := by

rw [zero_add]

61

I O

This theorem mirrors add_inv_unique but handles the case where b is a left inverse of a. In Lean’s encoding,

we need both theorems because we haven’t yet shown or assumed commutativity. The proof structure follows

a similar pattern, using the calc block to chain together equalities. Note how Lean’s tactic framework allows

us to reference our hypothesis t directly in the rewrite step. The next theorem proves that the negative of

a negative returns the original element:

theorem add_inv_of_inv (: Type u) [addGroup]
Va:, (- (-a)=a:=by
intro a
calc
(- (-a)) = zero + (- (-a)) := by
rw [zero_add]
- = (a+ (-a) + (- (-a)) :=by
rw [add_neg]
=a+ ((-a + (- (-a))

rw [add_assoc]

by

_ = a + zero := by
rw [add_neg]
_ = a := by

rw [add_zero]

This theorem demonstrates how Lean handles nested applications of the negation operation. The proof uses

the additive group properties we’ve established to show that double negation cancels out. Notice how Lean’s

type system ensures that expressions like - (-a) are well-formed when we have an additive group structure.

Finally, we prove the additive version of the ‘socks and shoes’ theorem:

theorem add_shoes_and_socks (: Type u) [addGroup]
Vab:, (-b)+ (-a)=((a+Db) :=hby
intros a b
have t : ((a + b) + ((- b) + (- a)) = zero) := by
calc

(@a+1b) + ((-b) + (- a))

exact add_inv_unique (a + b)

a+ (b+ ((-Db) + (- a)))
rw [add_assoc]

a+ ((b+ (-Db)) + (-a))
rv [add_assoc]

(a) + (zero + (- a)) := by
rw [add_neg]

(a) + (- a) := by

rvw [zero_add]

zero := by

rw [add_neg]

(1) + (-a)) t

by

by

This theorem shows that the negative of a sum equals the sum of the negatives in reverse order.

The

proof introduces an auxiliary fact using the have tactic, proving that (a + b) + ((—=b) + (—a)) = zero. This

62 CHAPTER 12. FORMALISING MATHEMATICS

intermediate result is then used with add_inv_unique to establish the main theorem. Note how Lean’s exact
tactic allows us to apply add_inv_unique with explicit type and term arguments. Next in our hierarchy

comes the definition of Abelian groups, which adds commutativity to our additive group structure:

class addAbelian (: Type u) extends addGroup where
add_comm : YVab: ,a+b=D>b+a

N

In this code structure, the addAbelian type class extends addGroup, adding a single new field add_comm.
This field represents the commutativity axiom as a proposition that must hold for all elements a and b in
our type . The universal quantification V a b : « tells Lean that this property must hold for any pair

of elements we might choose.

Instantiation With both multiplicative and additive groups structurally defined, one might wonder what
to do with them. We will now examine the process of implementing type class objects in Lean. The instance
keyword processes pre-defined type class definitions as a blueprint for which properties any object of that
classification must have. When we instanciate the cyclic group Cy, for example, we're creating a specific
implementation that satisfies the requirements made by the declared type class. This is similar to how in
mathematics we first define what a group is axiomatically, then show that specific objects (such as C5) satisfy
those axioms. In Lean, we do this by first inductively defining what C5 is, then providing instances that
implement each required operation and prove each required property. Each instance declaration is effectively
a proof that Cy satisfies part of the group axioms, culminating in a complete verification that Cy is indeed
a group under our defined operations. To demonstrate, we begin with our inductive definition:

inductive C2 where

| zero : C2

| one : C2
deriving Repr

N

This definition uses Lean’s inductive type system to create a type with exactly two elements, named zero and
one. The deriving Repr we saw earlier command tells Lean to automatically generate code for displaying
these values as strings. After defining the type itself, we need to provide instances of our type classes to give
Cs its group structure. We start with the additive identity:

instance : hasNone C2 where
zero := C2.zero

N

This instance declaration tells Lean that C3 has an additive identity element. The := syntax maps the
zero field from our hasNone type class to the C2.zero constructor we defined in our inductive type. This

establishes which element serves as the additive identity. Next comes the implementation of addition:

. instance : add C2 where
2 add := fun a b =>
match a, b with
| | C2.zero, x => x
5 | x, C2.zero => x
6 | C2.one, C2.one => C2.zero

This instance provides the addition operation for C5. The implementation uses pattern matching to define
how elements combine. When either argument is zero, the result is the other element —this encodes that
zero is the identity element. When both arguments are one, the result is zero —this encodes that 1+1 =0 in
modulo 2 arithmetic. The pattern matching syntax in Lean is a clear way to specify all possible combinations
of inputs when the options are limited, but far too verbose and barbaric for many combinations. It also isn’t
exceptionally elegant on that front, but it works. Moving to prove the associativity of addition:

1 instance : addSemigroup C2 where
2 add_assoc := by

12.3. MATHLIB 63

intros a b ¢
cases a ; cases b ; cases c ; rfl

IO U

This instance proves that C5 forms a semigroup. The proof uses case analysis with the cases tactic to handle
all possible combinations of elements. The <;> operator chains tactics, applying the subsequent tactics to all
subgoals generated by the previous tactic. Since Cy has only two elements, this generates eight cases total.
The rfl tactic proves each case by showing that both sides of the equation reduce to the same value. For
the monoid structure:

instance : addMonoid C2 where
zero_add := by

intro a

cases a ; rfl
add_zero := by

intro a

cases a ; rfl

This instance proves that Cy satisfies the monoid axioms. We need to prove both zero_add (0 +a = @) and
add_zero (a + 0 = a) since we haven’t assumed commutativity yet. Each proof follows the same pattern:
introduce an arbitrary element a, perform case analysis on it, and prove each case by reduction.

We now extend this even further to claim that Cs is not just an additive monoid, but an additive group:

instance : addGroup C2 where

neg := fun a =>

match a with

| C2.zero => C2.zero

| C2.one => C2.one
neg_add := by

intro a

cases a ; rfl

This instance defines the negation operation and proves it satisfies the group axioms. In C5, each element is
its own inverse (since we’re working modulo 2). The proof of neg_add again uses case analysis —since both
elements are self-inverse, the property holds trivially in both cases.
instance : addAbelian C2 where

add_comm := by

intros a b
cases a ; cases b ; rfl

Finally, we prove Cs is abelian. The proof performs case analysis on both inputs and shows that a+b=b+a
in each case. Since C has two elements, this generates four cases, each proved by reduction. These instances
collectively build up to show that C5 satisfies all the axioms of an abelian group. Each instance adds another

layer of structure, progressively proving that C5 meets all requirements of our type class definitions.

12.3 Mathlib

Transitioning to more elaborate mathematics involves managing larger proof states and making use of Lean’s
community-driven mathematical library, Mathlib. From this library, one can access definitions and theorems
across diverse areas —from adjacency matrices in graph theory to the epsilon-delta definition of continuity in
analysis, Mathlib has the mathematician covered. Importing Mathlib delivers a huge (and growing) database
of reusable components, ready to be played with. As with a pen-and-paper proof, there is a balance between
computational and propositional content that must be made. Lean distinguishes between data-carrying
structures (e.g., a specific graph with explicit vertices and edges) and proof-relevant propositions (e.g., the
statement that a graph is bipartite). Definitions prioritise computational relevance, while theorems focus on

verifiable claims. For example, defining a metric space involves specifying a type and a distance function,

64 CHAPTER 12. FORMALISING MATHEMATICS

while proving its completeness requires constructing a limit for every Cauchy sequence —a process that
combines recursive definitions (for sequences) and existential quantifiers (for limits). For example, consider
formalising the statement ‘every finite group has a composition series’. In Lean, this begins by defining Group,
Finite, and CompositionSeries as typeclasses or structures. The proof then proceeds by induction on group
order, using tactics like cases to decompose hypotheses and use to construct required series. Automation
via aesop or library_search might handle intermediate steps, while explicit term construction fills in the

gaps with explicit proof terms.

This document presents the mathematical foundations of theorem proving from formal logic and com-
putability to their implementation in Lean 4. Through an examination of logical frameworks and the
Curry-Howard Correspondence, we established the theoretical basis of modern proof assistants. Pro-
ceeding from Natural Deduction through lambda calculi to Dependent Type Theory and the Calculus
of Inductive Constructions, we connected logic with computation like Ms. Frizzle taking her students
aboard the Magic School Bus. Our analysis of Lean 4 demonstrated the theories in implementation, and
gave a grounding for formalising mathematics in the language. Through examination of proof terms,
tactics, and syntax, we connected abstract mathematics with concrete computation. The formalisation
of mathematical structures shows us one of the applications of machine-verified proofs, among many.
The connection between mathematics and computation in these systems provides the basis for research
in verification, proof theory, and computational logic. It’s a wild world of out there, and we just touched
the surface of it (AI, 2025).

Appendices

65

The Lambda Cube

The lambda Cube, introduced by Henk Barendregt (1991), is a three-dimensional framework used to classify
a family of typed lambda calculi based on the kinds of abstraction they permit. It provides a structured way
to understand how different systems extend the basic notion of function abstraction found in the untyped
lambda calculus by adding type-level abstractions. The cube is not a lambda calculus itself, it is a meta-
structure that organises eight different typed lambda calculi at its vertices. The cube’s most expressive
vertex contains the Calculus of Constructions (APw or AC), developed by Thierry Coquand and Gérard
Huet, which incorporates all possible dependencies and is the theoretical foundation for the proof assistant

Lean (Coquand and Huet, 1988). Figure 1 below gives a visual representation of the cube.

Aw = N2w — \C = \Pw

A2 AP2

Aw APw

A — AP

Figure 1: The Lambda Cube

.0.1 Dimensions of the Cube

The three dimensions of the Lambda Cube represent three fundamental forms of dependency or abstraction
within type theory. The first dimension, often denoted as the A\ axis or the ‘terms depending on terms’
axis, distinguishes between systems that allow function abstraction over terms. All systems in the cube
inherently possess this, as they are all lambda calculi. However, this axis is still relevant in differentiating
systems when considered in combination with other dimensions. The second dimension, referred to as the
II or ‘types depending on terms’ axis, introduces dependent types. Moving along this axis allows types to
depend on values. This means we can have type families indexed by terms. For example, we could define
a type Vector(n) where n is a term representing the length of the vector. Systems along this axis provide
the ability to express more specific type constraints and are at the ground floor of constructive type theory.
The third dimension, the w or ‘types depending on types’ axis, introduces polymorphism and type operators.
Moving along this axis allows types to be abstracted over types. This enables the definition of polymorphic
functions and type constructors. For example, we can define a polymorphic identity function that works for
any type, or a type constructor List(T) that creates a list type for any type T. Systems along this axis

increase the expressiveness in terms of generic programming and type-level computation.

66

67
.0.2 Vertices of the Cube

The Lambda Axis

Each vertex of the Lambda Cube corresponds to a specific typed lambda calculus, determined by which of
these dependency dimensions are enabled. The simplest system, located at the origin (0,0,0), is the STLC
(A —). This system only supports term abstraction; types are simple and fixed, and do not depend on terms
or other types. Continuing from the STLC (A —), we can explore the systems obtained by enabling different
forms of dependency. We first consider adding polymorphism, which corresponds to moving along the A
axis to the vertex (1,0,0). This leads to System F, also known as the Polymorphic Lambda Calculus or A2
(Reynolds, 1974). In System F, we introduce the capability for terms to depend on types. This is achieved
through type abstraction and type application. We can abstract over types in terms, creating polymorphic
functions. For example, we can define a polymorphic identity function that works for any type. This is
written using a type abstraction, which we will denote with a capital Lambda (A). So, the polymorphic
identity function in System F could be defined as AA.\x : A.x. Here, AA abstracts over a type variable A,
and the function Az : A.z is the identity function for a specific type A. To use this polymorphic function,
we need to apply it to a type, for example, (AA. Az : A.x)[Int] would be the identity function specifically for

integers.

The Pi Axis

We now consider movement along the IT axis from the STLC, which corresponds to the vertex (0, 1,0). This
gives us System AIl, which we will refer to as the Dependent Types Lambda Calculus (Yiyun, 2024). In
this system we introduce dependent product types, which are types that depend on terms, and use the II
notation to denote these dependent function types. As discussed in Section 6, a dependent function type
IIz : A.B(x) indicates a function that takes an argument x of type A, and returns a result of type B(z),
where the type B can depend on the value of x. The classic example is the type of vectors of a certain
length. We could have a type Vector(n) indexed by a natural number n. A function that constructs a
vector of length n might then have a type IIn : Nat.Vector(n) (Bauer, 2022). This is a palpable increase
in expressiveness as it allows us to express properties of programs within the type system itself, providing

more precision for type checking and verification.

The Omega Axis

Next, we consider motion along the w axis from the STLC, reaching the vertex (0,0,1). This leads to
System Aw, also known as Higher-Order Polymorphic Lambda Calculus or System Fw. In System Fw, we
introduce type operators, which are essentially functions at the type level (Nguyen, 2022). This means types
can depend on other types in a more structured way, allowing us to construct new types from existing ones.
For example, we can define a type constructor List that takes a type A and produces the type List (A).
This is different from simple polymorphism where we abstract over types in terms; here, we are abstracting
over types to build new types. Type operators are used for representing concepts like parameterised data
structures and for type-level computation (Yallop, 2018). System Fw allows for higher-order types, meaning
types can be applied to types and produce types, leading to a richer type system compared to System F
(Girard, 1972) and System AII considered individually. It provides the ability to work with type constructors
and is a basic necessity for type system properties found in languages that support generics and type families
(Chapman, 2019).

68 THE LAMBDA CUBE

Combining Dependency Dimensions

We have explored systems obtained by enabling each dimension individually starting from the STLC. Now
we will consider enabling combinations of these features. Take System F (A\2), which has polymorphism
(terms depending on types) (Girard, 1972), and adding dependent types (types depending on terms). This
means we are moving along the IT axis from System F. Alternatively, we can start with System AII, which has
dependent types, and add polymorphism (terms depending on types) by moving along the A axis. Both of
these approaches lead to the same system, which is the system at vertex (1,1,0) of the Lambda Cube. This
system is often referred to as System FII or AII2, but is perhaps less commonly named than others in the
cube. System FII combines the features of both System F and System AII. It allows for both polymorphic
functions (functions that can work with different types through type abstraction) and dependent types (types
that can depend on term values). This system is significantly more expressive than either System F or System
AMI alone. For example, in System FII, you can define polymorphic functions that operate on dependent
data structures, or define dependent types that are themselves parameterized by types (Nguyen, 2022). This

combination provides a powerful framework for expressing complex relationships between terms and types.

Combining Polymorphism Dimensions

Next, we consider combining polymorphism (terms depending on types) from System F and type operators
(types depending on types) from System Fw. Starting from System Fw and adding polymorphism (terms
depending on types) by moving along the A axis, or starting from System F and adding type operators
(types depending on types) by moving along the w axis, both lead to the system at vertex (1,0,1). We
denote this system as System Fw as well, although sometimes explicitly denoted as A2w with reference to the
combination of features. The name System Fw is predominantly used, and context usually clarifies whether
it refers to the system with just type operators (vertex (0,0, 1)) or the system with both polymorphism and
type operators (vertex (1,0,1)). In this expanded System Fw (vertex (1,0,1)), we have both the ability
to abstract terms over types (polymorphism as in System F) and the ability to define type operators (as
in System Fw at vertex (0,0,1)). This allows for even more expressive type-level programming (Nguyen,
2022). We can have polymorphic type operators, and we can use type operators to construct the types that

polymorphic functions operate on.

The King of the Castle

Finally, we consider the system at the corner of the cube (vertex (1,1,1)), which is obtained by enabling all
three forms of dependency: terms depending on terms, types depending on terms, and types depending on
types. This system is the Calculus of Constructions (CoC), which we denote as AC. CoC can be seen as
extending System FII (or System Fw) by adding the remaining dependency feature. Equivalently, starting
from any of the systems at vertices (1,1,0) or (1,0,1) and enabling the last remaining dependency feature
will lead to CoC. The Calculus of Constructions is a very expressive type theory that brigs together higher-
order polymorphism, dependent types, and type operators in a single framework (Coquand and Huet, 1988).
In CoC, types can depend on terms, terms can depend on types, and types can depend on types, and impor-
tantly, these dependencies can be combined and nested in very expressive ways. CoC is the most expressive
system within the Lambda Cube. It forms the basis for proof assistants and programming languages. It
is expressive enough to encode higher-order logic and is the foundation for systems like the Calculus of In-
ductive Constructions (ColIC), which further extends CoC with inductive types and is the basis of the Lean

proof assistant.

The Lambda Cube provides a structured way to understand the relationships between different typed
lambda calculi (Sgrensen and Urzyczyn, 2006). Moving along each axis adds a new form of abstraction,

69

increasing the expressiveness of the system. Starting from the STLC, we can reach increasingly expressive
systems by adding polymorphism, dependent types, and type operators, culminating in the Calculus of
Constructions, which combines all of these features. Each system in the cube builds upon the previous ones,
offering a spectrum of expressiveness suitable for different applications in logic, programming languages, and

formal verification.

Bibliography

Aberdein, A. (2007). The Informal Logic of Mathematical Proof. In Van Kerkhove, B. and Van Bendegem,
J. P., editors, Perspectives on Mathematical Practices, pages 135-151. Springer, Dordrecht.

Aczel, P. (1999). Notes on the Simply Typed Lambda Calculus. In Sambin, G. and Smith, J. M., editors,
Types and Computational Properties of Lambda Calculi, pages 1-15. Springer, Berlin, Heidelberg.

Adams, R. (2006). Pure type systems with judgemental equality. Journal of Functional Programming,
16(2):219-246.

AT (2025). Ai assistance in research and diagram generation. Used as a tool for research and for generating

diagrams. Al was used as a tool in the research process and for the creation of diagrams in this work.

Arbiser, A., Miquel, A., and Rios, A. (2006). A lambda-calculus with constructors. In Hermann, M. and
Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reasoning, volume 4246 of

Lecture Notes in Computer Science, pages 162-177. Springer, Berlin, Heidelberg.

Aschieri, F. and Zorzi, M. (2016). On natural deduction in classical first-order logic: Curry-Howard corre-

spondence, strong normalization and Herbrand’s theorem. Theoretical Computer Science, 625:125-146.
Assaf, A. (2014). A calculus of constructions with explicit subtyping. In Types for Proofs and Programs.
Avigad, J., de Moura, L., and Kong, S. (2023). Theorem Proving in Lean 4. Lean Community, Online.
Barendregt, H. (1991). Lambda calculi with types. Handbook of Logic in Computer Science, 2:117-309.

Barendregt, H. (2012). The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam.

Barendregt, H. (2013). Lambda Calculus with Types. Number 290 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, Cambridge.

Barthe, G. and Coquand, T. (2000). An introduction to dependent type theory. In Buss, S. R., Héjek, P.,
and Pudlék, P., editors, Proof Theory and Logical Complexity, volume 235 of Synthese Library, pages 1-25.
Springer Netherlands, Dordrecht.

Barthe, G. and Elbers, H. (1996). Towards Lean Proof Checking. In Berardi, S. and Coppo, M., editors,
Types for Proofs and Programs, pages 27—-44. Springer, Berlin, Heidelberg.

Bauer, A. (2022). Dependent types lecture notes.

Berline, C. (2000). From computation to foundations via functions and application: The A-calculus and its

webbed models. Theoretical Computer Science.

Besnard, P. (1989). First Order Logic. In An Introduction to Default Logic, pages 41-67. Springer, Berlin,
Heidelberg.

Bjesse, P. (2005). What is formal verification. ACM Sigda Newsletter, 35(2):1-4.

70

BIBLIOGRAPHY 71

Blanqui, F. (2003). Inductive types in the calculus of algebraic constructions. In Typed Lambda Calculi and
Applications, volume 2701 of Lecture Notes in Computer Science, pages 46—60. Springer.

Blanqui, F., Jouannaud, J.-P., and Okada, M. (1999). The calculus of algebraic constructions. In Jouannaud,
J.-P., editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science,
pages 20—44. Springer, Berlin, Heidelberg.

Boffa, M. (1984). Arithmetic and the Theory of Types. Journal of Symbolic Logic, 49(4):1348-1355.

Brogi, C. P. (2021). Curry-Howard—-Lambek Correspondence for Intuitionistic Belief. Studia Logica,
109(6):1313-1346.

Bunder, M. W. and Seldin, J. P. (2004). Variants of the basic calculus of constructions. Journal of Applied
Logic.

Buzzard, K. and Massot, P. (2021). Functional Programming in Lean. Lean Community, Online. Online
book.

Chapman, J. (2019). System F in Agda, for Fun and Profit. PhD thesis, University of Edinburgh.

Constable, R. L. (1980). Programs and types. In 21st Annual Symposium on Foundations of Computer
Science, pages 118-128. IEEE.

Constable, R. L. (1991). Type Theory as a Foundation for Computer Science. In Takayasu, I. and Meyer,
A. R., editors, Theoretical Aspects of Computer Software, pages 409-423. Springer, Berlin, Heidelberg.

Copeland, B. J. (1996). What is computation. Synthese, 108(3):335-359.

Coquand, T. and Huet, G. (1988). The calculus of constructions. Information and Computation, 76(2-3):95—
120.

Crossley, J. N. (2011). What Is Mathematical Logic? A Survey. In Schwichtenberg, H. and Wainer, S.,
editors, Proof and Computation, pages 3—27. Springer, Berlin, Heidelberg.

Culik, K. (1983). On formal and informal proofs for program correctness. Sigplan Notices, 18(8):39-47.

de Moura, L., Kong, S., Avigad, J., van Doorn, F., and von Raumer, J. (2015). The Lean Theorem Prover
(System Description). In Felty, A. P. and Middeldorp, A., editors, Automated Deduction - CADE-25,
volume 9195 of Lecture Notes in Computer Science, pages 378-388, Berlin, Heidelberg. Springer.

de Moura, L. and Ullrich, S. (2021). The Lean 4 Theorem Prover and Programming Language. In Platzer, A.
and Sutcliffe, G., editors, Automated Deduction - CADE-28, volume 12699 of Lecture Notes in Computer
Science, pages 625-635, Cham. Springer.

Dietrich, D. and Buckley, M. (2007). Verification of Proof Steps for Tutoring Mathematical Proofs. In Luckin,
R., Koedinger, K. R., and Greer, J., editors, Artificial Intelligence in Education: Building Technology Rich
Learning Contexts That Work, pages 560-562, Amsterdam. IOS Press.

Dixon, L. and Fleuriot, J. (2006). A proof-centric approach to mathematical assistants. Journal of Applied
Logic, 4(4):505-532.

Dowek, G. (2012). A theory independent curry-de bruijn-howard correspondence. In Beringer, L. and Felty,
A., editors, Interactive Theorem Proving, pages 19-33. Springer, Berlin, Heidelberg.

Duggan, D. and Bent, F. (1996). Explaining type inference. Science of Computer Programming, 27(1):37-83.

72 BIBLIOGRAPHY

Diez, G. F. (2000). Kolmogorov, heyting and gentzen on the intuitionistic logical constants. Critica- Revista
Hispanoamericana De Filosofia, 32(96):43-57.

Emerich, J. (2016). How are programs found? speculating about language ergonomics with Curry-Howard.
In Proceedings of the 2016 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2016, pages 6378, New York, NY. ACM.

Fairtlough, M. and Mendler, M. (2000). On the Logical Content of Computational Type Theory: A Solution
to Curry’s Problem. In Berger, U. and Schwichtenberg, H., editors, Types and Proofs in Computing, pages
63—-78. Springer, Berlin, Heidelberg.

Fischer, M. J. (1972). Lambda calculus schemata. In Proceedings of a conference on Proving assertions
about programs, SIGPLAN Notices, pages 107-119, New York, NY, USA. ACM.

Gaind, D., Zhang, M., Chiba, Y., and Arimoto, Y. (2013). Constructor-based inductive theorem prover. In
Automated Technology for Verification and Analysis, volume 8172 of Lecture Notes in Computer Science,

pages 328-332. Springer.

Garner, R. (2009). On the strength of dependent products in the type theory of Martin-Lof. Annals of Pure
and Applied Logic.

Garofalo, J., Trinter, C. P., and Swartz, B. A. (2015). Engaging with Constructive and Nonconstructive
Proof. Mathematics Teacher: Learning and Teaching PK—12, 108(6):422-428.

Geuvers, J. H. (1992). The calculus of constructions and higher order logic. PhD thesis, University of

Nijmegen.

Geuvers, J. H. and Nederpelt, R. P. (1994). Typed lambda-calculus. In Gabbay, D. M., Hogger, C. J., and
Robinson, J. A., editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 2,
pages 367—-468. Elsevier Science B.V.

Girard, J.-Y. (1972). System f. Archive for Mathematical Logic, 12(1):55-65.

Grue, K. (2001). A-Calculus as a Foundation for Mathematics. In Troelstra, A. S., Schwichtenberg, H.,
and Wainer, S. S., editors, Logic and Foundations of Mathematics, volume 292 of Synthese Library, pages
255-286. Springer Netherlands, Dordrecht.

Hindley, J. R. (1997). Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, Cambridge.

Hofmann, M. (1994). Elimination of extensionality in Martin-Lof type theory. In Barendregt, H. and Nipkow,
T., editors, Types for Proofs and Programs, pages 166-183. Springer, Berlin, Heidelberg.

Humberstone, L. and Makinson, D. (2011). Intuitionistic logic and elementary rules. Mind, 120(480):1035—
1051.

Ihlemann, C., Jacobs, S., and Sofronie-Stokkermans, V. (2008). On local reasoning in verification. In
Ramakrishnan, C. R. and Rehof, J., editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 265—281. Springer, Berlin, Heidelberg.

Indrzejczak, A. (2010). Standard Natural Deduction. In Artemov, S. and Fitting, M., editors, Natural
Deduction, Hybrid Systems and Modal Logics, pages 21-38. Springer, Dordrecht.

Ireland, A. (1993). On Exploiting the Structure of Martin-Lof’s Theory of Types. In Basin, D. and
Giunchiglia, F., editors, Automated Deduction in Nonstandard Logics, pages 245-260. Springer, Berlin,
Heidelberg.

BIBLIOGRAPHY 73

Irwin, R. J. (2008). Review of “Derivation and Computation: Taking the Curry-Howard Correspondence
Seriously by Harold Simmons,” Cambridge University Press, 2000. Sigact News, 39(1):25-27.

Kazmierczak, E. (1991). Algebraic reasoning in lambda calculus. University of Sussex.

Kurokawa, H. and Kushida, H. (2013). Substructural Logic of Proofs. In Libkin, L., Kohlenbach, U., and
de Queiroz, R., editors, Logic, Language, Information, and Computation, pages 181-193. Springer, Berlin,
Heidelberg.

Lean Development Team (2024). Lean 4 Reference Manual. Lean Community.

Li, D. (1992). A Natural Deduction Automated Theorem Proving System. In Kapur, D., editor, Automated
Deduction - CADE-11, pages 728—732. Springer, Berlin, Heidelberg.

Li, W. (1989). A Type-Theoretic Approach to Program Development. In IFIP Congress, Amsterdam.
North-Holland.

Longo, G. (2011). Theorems as Constructive Visions. In Foundations of the Formal Sciences VII, pages
47-72. Springer, Dordrecht.

Macbeth, H. (2021). Mathematical Proofs: A Transition to Advanced Mathematics. GitHub, Online.

Machado, R. (2013). An Introduction to Lambda Calculus and Functional Programming. In Workshop-School

on Theoretical Computer Science.

Markov, A. A. (1968). An Approach to Constructive Mathematical Logic. In Lakatos, 1., editor, Studies in
Logic and the Foundations of Mathematics, pages 283-294. North-Holland, Amsterdam.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, Upper
Saddle River, NJ.

Martin, R. M. (1943). A Homogeneous System for Formal Logic. Journal of Symbolic Logic, 8(1):1-23.

McBride, C. (2000). Dependently Typed Functional Programs and their Proofs. PhD thesis, University of
Edinburgh.

McCawley, J. D. (1991). Natural Deduction and Ordinary Language Discourse Structure. In Cooper, R.,
Mukai, K., and Perry, J., editors, Situation Theory and its Applications, pages 253-272. CSLI Publications,
Stanford.

McKinna, J. (2006). Why dependent types matter. In Symposium on Principles of Programming Languages.

Mella, P. (2012). The Kingdom of Circular Processes: The Logical Foundations of Systems Thinking. In
Minati, G., Abram, M., and Pessa, E., editors, Systems Thinking in Practice, pages 3-30. Springer, Milan.

Merz, S. (1997). Rules for Abstraction. In Gordon, A. D. and Pitts, A. M., editors, Higher Order Operational
Techniques in Semantics, pages 99-116. Cambridge University Press, Cambridge.

Nederpelt, R. R. and Geuvers, H. (2014). Type Theory and Formal Proof: An Introduction. Cambridge
University Press, Cambridge.

Newen, A., Nortmann, U., and Stuhlmann-Laeisz, R. (2001). Building on Frege: New essays about sense,
content and concepts. CSLI Publications, Stanford, CA.

Nguyen, M. (2022). Lambda calculus — A, system f, and system fw. Personal webpage.

74 BIBLIOGRAPHY

Nowak, S. (1977). Kinds of Propositions. In Przelecki, M. and Wojcicki, R., editors, Studies in Logic and
Scientific Reasoning, pages 71-89. Springer, Dordrecht.

O’Regan, G. (2012). History of Programming Languages. In A Brief History of Computing, pages 149-166.
Springer, London.

Ou, X., Tan, G., Mandelbaum, Y., and Walker, D. (2004). Dynamic typing with dependent types. In Dybjer,
P., Nordstréom, B., and Smith, J., editors, Types in Logic and Type Theory, volume 228 of NATO Science
Series II Computer and Systems Sciences, pages 557-582. Kluwer Academic Publishers, Dordrecht.

Paquette, D. (2009). Categorical quantum computation. PhD thesis, McGill University.

Paulin-Mohring, C. (1993). Inductive definitions in the system coq - rules and properties. In Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages 328-345. Springer.

Peckhaus, V. (1997). The way of logic into mathematics. Theoria-Revista De Teoria Historia Y Fundamentos
De La Ciencia, 12(1):39-67.

Pelletier, F. J. and Hazen, A. (2012). A History of Natural Deduction. In Gabbay, D. M. and Woods, J.,
editors, Handbook of the History of Logic, pages 299-356. North-Holland, Amsterdam.

Pierce, B. C. (2002). Types and Programming Languages. MIT Press, Cambridge, MA.

Pitts, A. M. (2019). Lecture Notes on Type Systems. University of Cambridge, Computer Laboratory,
Cambridge, UK.

Plato, J. (2001). Natural deduction with general elimination rules. Archive for Mathematical Logic, 40(7):541—
567.

Restall, G. (2004). Laws of Non-Contradiction, Laws of the Excluded Middle, and Logics. In Priest, G.,
Beall, J. C., and Armour-Garb, B., editors, The Law of Non-Contradiction, pages 73—-85. Oxford University
Press, Oxford.

Reynolds, J. C. (1974). Towards a theory of type structure. Lecture Notes in Computer Science, pages
408-425.

Sato, M. (1997). Classical Brouwer-Heyting-Kolmogorov Interpretation. Theoretical Aspects of Computer
Software, pages 162—-181.

Schroeder-Heister, P. (2014). Generalized Elimination Inferences, Higher-Level Rules, and the Implications-
as-Rules Interpretation of the Sequent Calculus. In Prawitz, D. and Gibbons, P., editors, The Life of
Proofs, pages 1-29. Springer, Dordrecht.

Scott, D. (1980). Lambda Calculus: Some Models, Some Philosophy. In Barwise, J., Keisler, H. J., and
Kunen, K., editors, Studies in Logic and the Foundations of Mathematics, pages 223-265. North-Holland,
Amsterdam.

Seisenberger, M. (2003). On the Constructive Content of Proofs. PhD thesis, Ludwig Maximilian University
of Munich.

Seldin, J. P. (1997). On the proof theory of Coquand’s calculus of constructions. Annals of Pure and Applied
Logic.

Sieg, W. and Byrnes, J. (2005). Normal Natural Deduction Proofs (in classical logic). In Beckert, B.,
editor, Automated Reasoning with Analytic Tableaux and Related Methods, pages 123-138. Springer, Berlin,
Heidelberg.

BIBLIOGRAPHY (0]

Siles, V. (2010). Investigation on the typing of equality in type systems. PhD thesis, Unknown School.

Stefanova, M. and Geuvers, H. (1995). A simple model construction for the calculus of constructions. In
Nordstréom, B., Palo, K., and Ranta, A., editors, Types for Proofs and Programs, volume 996 of Lecture
Notes in Computer Science, pages 517-532. Springer, Berlin, Heidelberg.

Steinberger, F. (2016). Explosion and the normativity of logic. Mind, 125(498):385-419.

Sgrensen, M. H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism, volume 149 of Studies
in Logic and the Foundations of Mathematics. Elsevier.

Thiel, C. (1982). From Leibniz to Frege: Mathematical Logic Between 1679 and 1879. Studies in the History
of Mathematical Logic, 10:300-325.

Troelstra, A. S. (1977a). Aspects of Constructive Mathematics. Studies in Logic and the Foundations of
Mathematics, 90:973-1052.

Troelstra, A. S. (1977b). Axioms for Intuitionistic Mathematics Incompatible with Classical Logic. In
Barwise, J. and Keisler, H. J., editors, Studies in Logic and the Foundations of Mathematics, pages 239—
251. North-Holland, Amsterdam.

Wadler, P. (2015). Propositions as types. Communications of the ACM, 57(12):45-53.
Yallop, J. (2018). System fw. Technical report, University of Cambridge.

Yan, X. and Hanna, G. (2023). Using the Lean interactive theorem prover in undergraduate mathematics.
International Journal of Mathematical Education in Science and Technology, 54(7):1933-1954.

Yaqub, A. M. (2013). An Introduction to Logical Theory. Broadview Press, Peterborough, Ontario.

Yiyun, L. (2024). Short and mechanized logical relation for dependent type theories. University of Pennsyl-

vania.

Alvez, J. and Lucio, P. (2005). An algorithm for local variable elimination in normal logic programs. In Etalle,

S., editor, Logic Based Program Synthesis and Transformation, pages 76-90. Springer, Berlin, Heidelberg.

	I Logical Foundations
	History and Motivation
	Preliminaries
	Formal Logic
	Models of Computation
	Formal Proofs

	Natural Deduction
	Fundamental Principles
	Rules of Inference
	Proof Construction
	Computational Properties

	The Untyped Lambda Calculus
	Definition and Syntax
	Term Construction
	Operations
	Computational Properties
	Examples

	The Simply Typed Lambda Calculus
	Definition and Syntax
	Typing Judgements
	Rules of Inference
	Computational Properties

	Dependent Type Theory
	The Calculus of Constructions
	The Calculus of Inductive Constructions

	The Curry-Howard Correspondence

	II The LN Proof Assistant
	Introduction
	Syntax
	Proof Terms
	Tactic Mode
	Tactic Categories

	Formalising Mathematics
	The Natural Numbers
	Algebraic Structures
	Mathlib

	Appendices
	The Lambda Cube

