
1. Imports and Opened Namespaces
import Lean
import Batteries.Tactic.Exact
import Qq

open Lean Elab Command Term Meta Qq

● Imports: The code imports necessary modules:
○ Lean: The core Lean language functionalities.
○ Batteries.Tactic.Exact: Likely a custom or additional module providing

enhanced tactics (assuming it's available in the environment).
○ Qq: A macro and metaprogramming utility for working with quoted expressions in

Lean.
● Namespaces: Opens several Lean namespaces to make functions and types available

without qualifying them:
○ Lean, Elab, Command, Term, Meta, Qq.

2. Theorems for Commutativity of Equality and Inequality

theorem Eq.comm'.{u} {α : Sort u} {a b : α} : (a = b) = (b = a) :=
propext Eq.comm
theorem Ne.comm'.{u} {α : Sort u} {a b : α} : (a ≠ b) = (b ≠ a) :=
propext ne_comm

● Purpose: These theorems express the commutativity of equality (=) and inequality (≠) in
terms of propositional equality (=) rather than logical equivalence (↔).

● Explanation:
○ Eq.comm states that a = b ↔ b = a.
○ propext converts a logical equivalence into a propositional equality.
○ Thus, Eq.comm' states (a = b) = (b = a).

3. Definition of Lean.MVarId.congrWith

partial def Lean.MVarId.congrWith (mvarId_ : MVarId) (eqs : List Expr)
: MetaM Unit := ...



● Purpose: Attempts to solve a metavariable (an unsolved goal in the proof) using
congruence rules and provided equations, mirroring how Vampire uses congruence
closure in its proofs.

● Explanation:
○ Parameters:

■ mvarId_: The metavariable (goal) to solve.
■ eqs: A list of equations that can be used in the congruence process.

○ Process:
■ Tries to solve the goal using refl (reflexivity).
■ If that fails, it tries to directly assign the goal to one of the provided

equations (eqs).
■ If still unsuccessful, it breaks down the goal using congruence

(congrCore) and recursively tries to solve the subgoals.
■ If necessary, it attempts to swap the sides of equalities or inequalities

using Eq.comm' or Ne.comm' and tries again.

4. Definition of Lean.Expr.eqswap

def Lean.Expr.eqswap (e : Expr) : Expr := ...

● Purpose: Swaps the left-hand side (LHS) and right-hand side (RHS) of an equality or
inequality expression.

● Explanation:
○ Checks if e is an equality (a = b) or inequality (a ≠ b).
○ If so, constructs a new expression with the LHS and RHS swapped (b = a or b

≠ a).
○ Returns the original expression if it's neither.

5. Definition of mkEqNeSymm
def mkEqNeSymm (h : Expr) : MetaM Expr := ...

● Purpose: Generates the symmetric version of an equality or inequality proof.
● Explanation:

○ If h is a proof of a = b, returns a proof of b = a using Eq.symm.
○ If h is a proof of a ≠ b, returns a proof of b ≠ a using Ne.symm.
○ Throws an error if h is neither.

6. Elaboration of superpose



elab "superpose " eq1:term:arg eq2:term:arg : term <= typ => do ...

● Purpose: Implements the superposition inference rule, which is a key rule in Vampire for
handling equalities.

● Explanation:
○ Process:

■ Elaborates (elabTerm) and infers types for eq1 and eq2.
■ Decomposes their types to instantiate any universal quantifiers.
■ Constructs a fresh metavariable v of type e2 = typ, where e2 is the

instantiated RHS of eq2 and typ is the target type.
■ Uses congrWith to try to solve v using eq1 and its symmetric version.
■ Constructs the final expression by applying the proven equality to eq2.
■ Ensures that the resulting expression has the correct type and that all

metavariables are resolved (using assumption).

7. Definitions for Subsumption and Resolution
Subsumption Functions:

partial def doSubsumptionSingle {α : Type} (t1 : Q(Prop)) (target :
Q(Prop)) ...
partial def doSubsumptionWith {α : Type} (res : Q(Prop)) (t2 :
Q(Prop)) (target : Q(Prop)) ...

●
○ Purpose: These functions attempt to determine if one clause (logical formula)

subsumes another, meaning one implies the other.
○ Explanation:

■ doSubsumptionSingle: Checks if a single term t1 subsumes target,
considering commutativity for equalities and inequalities.

■ doSubsumptionWith: Handles the case when t2 is a disjunction
(logical OR), recursively checking subsumption for each disjunct.

Resolution Functions:

partial def doResolutionSingle {α : Type} (t1 : Q(Prop)) (t2 :
Q(Prop)) ...
partial def doResolution (t1 : Q(Prop)) (t2 : Q(Prop)) ...

●
○ Purpose: Implement the resolution inference rule, which is fundamental in

automated theorem proving for propositional and first-order logic.



○ Explanation:
■ doResolutionSingle: Attempts to resolve a single term t1 with t2,

handling negations and potential commutativity.
■ doResolution: Recursively applies doResolutionSingle to

disjunctive terms (logical ORs) in t1.

8. Elaboration of resolve

elab "resolve " eq1:term:arg eq2:term:arg : term <= typ => do ...

● Purpose: Provides a tactic to perform resolution between two clauses, similar to how
Vampire applies resolution in its proofs.

● Explanation:
○ Process:

■ Elaborates eq1 and eq2, infers their types, and instantiates any
variables.

■ Attempts to resolve eq1 with eq2 to produce a term of type typ.
■ If the initial attempt fails, swaps eq1 and eq2 and tries again.
■ Uses the doResolution function to handle the resolution logic.
■ Applies the resulting function to the appropriate proof (eq1 or eq2).

9. Elaboration of subsumption

elab "subsumption " eq1:term:arg eq2:term:arg : tactic => do ...

● Purpose: Implements a tactic to prove that one clause subsumes another, effectively
showing that one implies the other.

● Explanation:
○ Process:

■ Retrieves the current goal (goal) and its type (goalType).
■ Attempts to match eq1 or eq2 to the goal, potentially swapping sides of

equalities or inequalities.
■ Tries to resolve any remaining metavariables using assumption.
■ Assigns the proof to the goal if successful.

10. Macro Definition for mod_symm

macro "mod_symm " ar:term:arg : term => `(by first | exact $ar | exact
Eq.symm $ar | exact Ne.symm $ar)"



● Purpose: Provides a convenient way to attempt to apply a proof ar or its symmetric
version to the current goal.

● Explanation:
○ The macro tries exact $ar, exact Eq.symm $ar, and exact Ne.symm

$ar in order.
○ This is useful when the proof might require swapping sides of an equality or

inequality.

11. Converting Vampire Proofs into Lean Proofs

● Overall Strategy:
1. The code defines functions and tactics that correspond to the inference rules

used by Vampire.
2. By providing equivalents of Vampire's superposition, resolution, and subsumption

in Lean, we can replicate the steps of a Vampire proof within Lean's proof
environment.

● Step-by-Step Conversion:
1. Identify Proof Steps: Break down the Vampire proof into individual inference

steps (e.g., applications of superposition, resolution, subsumption).
2. Map to Lean Functions: For each inference step, use the corresponding Lean

function or tactic:
■ Use superpose for superposition steps.
■ Use resolve for resolution steps.
■ Use subsumption for subsumption steps.

3. Elaborate Terms: Use elabTerm to elaborate terms and instantiate variables,
aligning the Vampire proof terms with Lean's representation.

4. Handle Equations and Inequalities: Use Eq.comm', Ne.comm', and functions
like mkEqNeSymm to manage commutativity and symmetry as needed.

5. Solve Metavariables: Use congrWith and other helper functions to resolve
metavariables by matching them with known equations or applying congruence.

6. Construct Proofs: Assemble the individual proof steps into a complete proof in
Lean, ensuring that all types align and that the final proof matches the goal.

7. Verify and Optimize: Use Lean's type checking and metavariable resolution to
verify the correctness of each step and optimize the proof.

Example Workflow

Suppose Vampire has proven a theorem using the following steps:

1. Superposition between Equations: From a = b and b = c, derive a = c.
2. Resolution with Negated Clause: From ¬a = c and a = c, derive a contradiction.



3. Subsumption: Show that a clause subsumes another.

Conversion into Lean Proof:

Step 1: Use superpose to derive a = c:
lean
Code kopieren
have h1 : a = b := ...
have h2 : b = c := ...
have h3 : a = c := superpose h1 h2

Step 2: Use resolve to derive a contradiction:
lean
Code kopieren
have h4 : ¬a = c := ...
have h5 : False := resolve h4 h3

Step 3: Use subsumption to show clause subsumption:
lean
Code kopieren
subsumption h_some_clause h_another_clause


