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Motivation

Suppose we encounter this in the Lean theorem prover:

x z: ℤ
hxz: x + z < 2
f: ℤ → ℤ
hz: 0 < z
hx: 0 ≤ x
⊢ ∀ (y : ℤ), f (x + y) = f y

Wouldn’t it be great if  we 

could automate tedious 

formalization with just one 

command?
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• Powerful automation tactics
• 40% of Mizar Math library

• 47% of Flyspeck libraries (HOL Light)

• Similar results in Isabelle

• Integrate ATPs into proof assistants
• SMT, Superposition, tableau

• Components
• Premise selector

• Translation module (into ATP’s logic)

• Proof reconstruction module

• Implement highlighted portion in Lean

• Use cvc5!

Hammers
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Borrowed from Magnushammer paper.



A tactic that integrates cvc5 and Lean would benefit both worlds

The Lean-SMT Tactic

Verifies

Solves
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Tactic Workflow

UNSAT Proof

Original Goal

SMT-LIB Query

Simplified Goal
Preprocess

Translate
Reconstruct
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Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

⊢ ∀ (G : Type u) [Group G] (e : G),
    (∀ (a : G), e * a = a) e = 1

Identity element is unique in any group 𝐺!

Original Lean Goal

SMT-LIB does not support quantifying over Types and Type classes!!!
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Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

• Lean’s type system is very rich!

• SMT-LIB is based on FOL (with limited HOL)

• Utilize Lean-auto!
• Very helpful, but not enough!

• Theories are minimal
• Do not support every operation and sort

• Reduce papercuts:
• Replace 𝑝 𝑞 with 𝑝 = 𝑞
• Embed Bool into Prop
• Embed Nat into Int
• Etc.

UF

NIA

LRA

FOL

Lean’s Type System

HOL

Type
ClassesDependent

Types
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Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

⊢ ∀ (G : Type u) [Group G] (e : G),
    (∀ (a : G), e * a = a) e = 1

Identity element is unique in any group 𝐺!

G: Type u
inst: Group G
e e': G
op: G → G → G
inv: G → G
one_mul: ∀ (a : G), op e a = a
inv_mul_cancel: ∀ (a : G), op (inv a) a = e
mul_assoc: ∀ (a b c : G),
op (op a b) c = op a (op b c)

⊢ (∀ (a : G), (op e' a = a)) = (e' = e)

Original Lean Goal Preprocessed Lean Goal
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Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

(declare-sort G 0)
(declare-const e G)
(declare-const |e'| G)
(declare-fun op (G G) G)
(declare-fun inv (G) G)
(assert (forall ((a G)) (= (op e a) a)))
(assert (forall ((a G))
 (= (op (inv a) a) e)))
(assert (forall ((a G) (b G) (c G))
  (= (op (op a b) c)
     (op a (op b c)))))))
(assert (distinct
 (forall ((a G)) (= (op |e'| a) a)
 (= |e'| e))))
(check-sat) 

G: Type u
inst: Group G
e e': G
op: G → G → G
inv: G → G
one_mul: ∀ (a : G), op e a = a
inv_mul_cancel: ∀ (a : G), op (inv a) a = e
mul_assoc: ∀ (a b c : G),
op (op a b) c = op a (op b c)

⊢ (∀ (a : G), (op e' a = a)) = (e' = e)

Translation is sound because 𝐺 is nonempty!

Preprocessed Lean Goal SMT-LIB Query
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(declare-sort G 0)
(declare-const e G)
(declare-const |e'| G)
(declare-fun op (G G) G)
(declare-fun inv (G) G)
(assert (forall ((a G)) (= (op e a) a)))
(assert (forall ((a G))
 (= (op (inv a) a) e)))
(assert (forall ((a G) (b G) (c G))
  (= (op (op a b) c)
     (op a (op b c)))))))
(assert (distinct
 (forall ((a G)) (= (op |e'| a) a)
 (= |e'| e))))
(check-sat) 

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

(define @t1 () (eo::var "a" G))
(define @t2 () (op e @t1))
...
(assume @p1 (forall @t3 (= @t2 @t1)))
(assume @p2 (forall @t3 (= @t4 e)))
(assume @p3 @t8)
(assume @p4 (not (= (forall @t3 (= @t9 @t1))
                   (= |e'| e))))
(step @p5 :rule quant-merge-prenex
          :args ((= @t8 @t10)))
(step @p6 :rule eq_resolve
         :premises (@p3 @p5))
(step @p7 :rule eq-symm :args (@t4 e))
(step @p8 :rule cong :premises (@p7)
          :args ((forall ((a G)))))
...

SMT-LIB Query cvc5 Proof (CPC)
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(define @t1 () (eo::var "a" G))
(define @t2 () (op e @t1))
...
(assume @p1 (forall @t3 (= @t2 @t1)))
(assume @p2 (forall @t3 (= @t4 e)))
(assume @p3 @t8)
(assume @p4 (not (= (forall @t3 (= @t9 @t1))
                   (= |e'| e))))
(step @p5 :rule quant-merge-prenex
          :args ((= @t8 @t10)))
(step @p6 :rule eq_resolve
         :premises (@p3 @p5))
(step @p7 :rule eq-symm :args (@t4 e))
(step @p8 :rule cong :premises (@p7)
          :args ((forall ((a G)))))
...

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

have a0 : e = op (inv e') e' := by assumption
have a1 : e' = op e' e' := by assumption
...
have s2 : inv e' = inv e' := Eq.refl (inv e')
have s3 : op e' e' = e' := Eq.symm a1
have s4 : op (inv e') (op e' e') =
         op (inv e') e' :=
  congr (congr (Eq.refl op) (Eq.refl (inv e')))
       (Eq.symm a.17)
have s5 : op (inv e') e' = e := Eq.symm a0
have s6 : op (inv e') (op e' e') = e :=
 Eq.trans (congr (congr (Eq.refl op)
                 (Eq.refl (inv e')))
          (Eq.symm a1)) (Eq.symm a0)
have s7 : e' = e' := Eq.refl e'
...

cvc5 Proof (CPC) Lean Proof

Check with Lean’s Kernel!!! 11



Overall Architecture

SMT Query

Preprocessor

Input F

Postprocessor

Proof (Lean)

Reconstructor

Proof (CPC)

cvc5

Input F’

Proof (Lean)

Translator

Preprocessing
Proof

cvc5’s Lean API

one-to-one

Lean-SMT Tactic

Minimal!
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Reconstruction: Proof Replay vs. Verified Checker

Proof Replay

• Reconstructs proofs inference-
by-inference inside the proof 
assistant

• Example: Isabelle 
SledgeHammer

• Pro: easy to implement and 
modify

• Con: slower

• Our approach!
• No standard SMT proof format
• cvc5 proof rules are not stable

Verified Checker

• Proofs are checked within the 
proof assistant yielding a proof 
by reflection rather than 
simulation

• Example: SMTCoq

• Pro: fast

• Con: hard to implement and 
modify
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• A cvc5 proof is a sequence of steps (instantiations of proofs rules)

• There are ~130 proof rules and ~360 rewrite rules

• Proof and rewrite rules must be formalized in Lean!

• Three approaches:

• Theorems: prove a theorem capturing a proof rule/rewrite rule

• Tactics: repeated application of a set of theorems

• Reflection: normalization steps

Proof Reconstruction
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Proof Reconstruction: Theorems

theorem orN_resolution 

  (hps : orN ps) (hqs : orN qs) 

  (hi : i < ps.length) 

  (hj : j < qs.length) 

  (hij : ps[i] = ¬qs[j]) : 

  orN (ps.eraseIdx i ++ qs.eraseIdx j)

The most straightforward approach is to formalize and prove a theorem 
capturing a proof rule/rewrite rule (e.g. RESOLUTION)

𝐶1, 𝐶2 ∣ 𝑝𝑜𝑙, 𝐿

𝐶
where

• 𝐶1 and 𝐶2 are CNF clauses

• 𝑝𝑜𝑙 is either ⊤ or ⊥, representing the 
polarity of the pivot on the first clause

• 𝐿 is the pivot of the resolution, which 
occurs as is (resp. under a NOT) in 𝐶1 and 
negatively (as is) in if 𝑝𝑜𝑙 = ⊤ (𝑝𝑜𝑙 =⊥)
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• In some cases where the formalization of the process is too complex, we write a tactic

• Example: QUANT_MINISCOPE_AND rewrite rule
∀𝑋. 𝐹1 ∧ ⋯ ∧ 𝐹𝑛 = ∀𝑋. 𝐹1 ∧ ⋯ ∧ ∀𝑋. 𝐹𝑛

• 𝑋 denotes a multiple variables!

• This involves two key theorems

theorem miniscope_andN {ps : List (α → Prop)} :

  (∀ x, andN (ps.map (· x))) = andN (ps.map (∀ x, · x))

theorem forall_congr {α : Sort u} {p q : α → Prop} (h : ∀ a, p a = q a) : 

(∀ a, p a) = (∀ a, q a) 

• Iteratively apply the two theorems, peeling one variable at a time

example : (∀ x y, p x y ∧ q x y) = ((∀ x y, p x y) ∧ (∀ x y, q x y)) := by

smt

Proof Reconstruction: Tactics
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• Verified programs allow us to prove correctness properties about an executable program

• poly_norm normalizes polynomials (up to distrib., assoc.,  and comm.)
example (x y : Int) (z : Real) : 1 * ↑(x + y) * z / 4 = 1 / (2 * 2) * (z * ↑y + ↑x * z) := by

  poly_norm

• poly_norm completely expands polynomials into a sum of monomials

• Variables in monomials are defined as List Nat allowing them to be compared easily

• Our implementation proves theorems pushing evaluation into each operator.
theorem denote_mul {m₁ m₂ : Monomial} : (m₁.mul m₂).denote ctx = m₁.denote ctx * m₂.denote ctx

theorem denote_add {p₁ p₂ : Polynomial} : (p₁.add p₂).denote ctx = p₁.denote ctx + p₂.denote ctx

• And a correctness theorem
theorem denote_eq_from_toPolynomial_eq {e₁ e₂ : RealExpr}

  (h : e₁.toPolynomial = e₂.toPolynomial) : e₁.denote ictx rctx = e₂.denote ictx rctx

Proof Reconstruction: Reflection

17



Demo!



• Supports UFs, linear integer/real arithmetic, and quantifiers

• No benchmarks for Lean (in progress!)

• Tested on Isabelle benchmarks from previous publications

• In SMT-LIB format (1 minute timeout)

Current Status & Evaluation

Benchmark Set Reconstruction 
Succeeded

Solved by cvc5 Total Number of 
Benchmarks

SledgeHammer 1722 1750 4260

17 Provers 2762 2812 5000

Total 4484 4562 9260
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• Create a benchmark set for Lean!

• Support more theories (BitVec, Datatypes, etc.)

• Support more proof rules (current state: 180 rules)

• Add more preprocessing steps (reduce papercuts)

• Improve integration with Lean-auto

• Work towards a Sledgehammer in Lean
• described as “the difference between walking and running” (L Paulson).

Next Steps
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Questions?
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