Lean-SMT: Integration of Theorem Provers with SMT Solvers

Haniel Barbosa, Clark Barrett, Tomaz Gomes, Harun Khan, Abdalrhman Mohamed, Andrew Reynolds, Cesare Tinelli

Motivation

Suppose we encounter this in the Lean theorem prover:

x z: ℤ hxz: x+z<2 f: $\mathbb{Z} \to \mathbb{Z}$ hz: 0 < z hx: $0 \le x$ $\vdash \forall (y : \mathbb{Z}), f(x + y) = f y$ Wouldn't it be great if we could automate tedious formalization with just one command?

Hammers

- Powerful automation tactics
 - 40% of Mizar Math library
 - 47% of Flyspeck libraries (HOL Light)
 - Similar results in Isabelle
- Integrate ATPs into proof assistants
 - SMT, Superposition, tableau
- Components
 - Premise selector
 - Translation module (into ATP's logic)
 - Proof reconstruction module
- Implement highlighted portion in Lean
- Use cvc5!

The Lean-SMT Tactic

A tactic that integrates cvc5 and Lean would benefit both worlds

SMT-LIB does not support quantifying over Types and Type classes!!!

Identity element is unique in any group G!

	Preprocessing	Translation		Solving		Reconstruction		
	Original Lean Goal		Preprocessed Lean Goal G: Type u inst: Group G					
⊢ ∀ (G : Type u) [Group G] (e : G), (∀ (a : G), e * a = a) ↔ e = 1 Identity element is unique in any group G!			<pre>e e': G op: G → G → G inv: G → G one_mul: ∀ (a : G), op e a = a inv_mul_cancel: ∀ (a : G), op (inv a) a = f mul_assoc: ∀ (a b c : G), op (op a b) c = op a (op b c)</pre>					
				⊢ (∀ (a : G),	(op e'	a = a)) = (e' =	e)	

	Preprocessing		Translation	Solving		Reconstruction	
	Preprocessed	Lean Go	al		SMT-	LIB Query	
G: Type u inst: Gro e e': G op: G → C inv: G → one_mul: inv_mul_c mul_assoc op (op a ⊢ (∀ (a	up G G → G G ∀ (a : G), op e cancel: ∀ (a : G) : ∀ (a b c : G) a b) c = op a (op : G), (op e' a =	a = a), op (i , b c) a)) = (nva)a=e e'=e)	(declare-sold) (declare-cold) (declare-cold) (declare-ful) (declare-ful) (declare-ful) (assert) (for) (assert) (for) (assert) (for) (assert) (for) (assert) (di) (for)	ort G Ø) onst e G onst e' un op (G un inv (orall ((orall ((orall ((op a b) (op b c istinct ((a G)) e))))	i) G) G) G) a G)) (= (op e a) a G)) a G) (b G) (c G)) c) c) c) (= (op e' a) a)	a)))

Translation is sound because *G* is nonempty!

	Preprocessing		Translation	Sc	olving		Reconstruction		
	SMT-LIB Que	ry				cvc5 F	Proof (CPC)		
(declare-sort G 0) (declare-const e G) (declare-const e' G)				(define @t1 () (eo::var "a" G)) (define @t2 () (op e @t1))					
(declare-fun op (G G) G)				(assume @p1 (forall @t3 (= @t2 @t1))) (assume @p2 (forall @t3 (= @t4 e)))					
(assert (forall ((a G)) (= (op e a) a)))				(assume @p3 @t8)					
(assert (forall ((a G)) (= (op (inv a) a) e)))			(assume @p4 (not (= (forall @t3 (= @t9 @t1)) (= e' e))))						
(ass	sert (forall ((a G)	(b G)	(c G))	(step @p5 :rule quant-merge-prenex					
(=	<pre>(op (op a b) c) (op a (op b c))))</pre>))		(step @p6	:args 5 :rule	((= @t eq_res	8 @t10))) olve		
(ass	sert (distinct	n la'		(stop @p7	:prem:	ises (@	p3 @p5)) m : 2pgs (@+4 o))		
(=	= e' e))))	ף ופ	a <i>)</i> a <i>)</i>	(step @p8	3 :rule	cong :	premises (@p7)		
(che	eck-sat)				:args	((fora	ll ((a G)))))		

• • •

. . .

$\begin{array}{llllllllllllllllllllllllllllllllllll$		Preprocessing	Tr	anslation		Solving		Reconstruction	
<pre>(define @t1 () (eo::var "a" G)) (define @t2 () (op e @t1)) (assume @p1 (forall @t3 (= @t2 @t1))) (assume @p2 (forall @t3 (= @t2 @t1))) (assume @p3 @t8) (assume @p3 @t8) (assume @p4 (not (= (forall @t3 (= @t9 @t1))</pre>		cvc5 Proof	(CPC)				Lean Pro	oof	
<pre> (assume @p1 (forall @t3 (= @t2 @t1))) (assume @p2 (forall @t3 (= @t4 e))) (assume @p3 @t8) (assume @p4 (not (= (forall @t3 (= @t9 @t1))</pre>	(def (def	ine @t1 () (eo::var ine @t2 () (op e @t	"a" G)) 1))		have a0 have a1): e = op : e' = op	(inv e') e' e' :=	e' := by assumption = by assumption	
<pre>(= e' e)))) (step @p5 :rule quant-merge-prenex</pre>	<pre> (assume @p1 (forall @t3 (= @t2 @t1))) (assume @p2 (forall @t3 (= @t4 e))) (assume @p3 @t8) (assume @p4 (not (= (forall @t3 (= @t9 @t1))</pre>				<pre>have s2 : inv e' = inv e' := Eq.refl (inv e') have s3 : op e' e' = e' := Eq.symm a1 have s4 : op (inv e') (op e' e') =</pre>				
(step @p6 :rule eq_resolveEq.trans (congr (congr (Eq.refl op) (Eq.refl (inv e')))(step @p7 :rule eq-symm :args (@t4 e))(Eq.symm a1)) (Eq.symm a0)(step @p8 :rule cong :premises (@p7)have s7 : e' = e' := Eq.refl e'	(ste	(= p @p5 :rule quant-m :args ((= @t8	e' e)))) erge-prenex @t10)))		have se	(Eq.symm a 5 : op (inv 5 : op (inv	a.17) e') e' = e') (op	= e := Eq.symm a0 e' e') = e :=	
<pre>(step @p7 :rule eq-symm :args (@t4 e)) (Eq.symm a1)) (Eq.symm a0) (step @p8 :rule cong :premises (@p7) have s7 : e' = e' := Eq.refl e' :args ((forall ((a G)))))</pre>	(ste	p @p6 :rule eq_reso :premises (@p	1ve 3 @p5))		Eq.tr	ans (congr	(congr ((Eq.refl	(Eq.refl op) L (inv e')))	
	(ste (ste	<pre>p @p7 :rule eq-symm p @p8 :rule cong :p</pre>	:args (@t4 remises (@p l ((a G))))	e)) 7))	have s7	(Eq.syr ': e' = e'	mm a1)) (:= Eq.re	(Eq.symm a0) efl e'	

Overall Architecture

Reconstruction: Proof Replay vs. Verified Checker

Proof Replay

- Reconstructs proofs inferenceby-inference inside the proof assistant
- Example: Isabelle SledgeHammer
- Pro: easy to implement and modify
- Con: slower
- Our approach!
 - No standard SMT proof format
 - cvc5 proof rules are not stable

Verified Checker

- Proofs are checked within the proof assistant yielding a proof by reflection rather than simulation
- Example: SMTCoq
- Pro: fast
- Con: hard to implement and modify

Proof Reconstruction

- A cvc5 proof is a sequence of steps (instantiations of proofs rules)
- There are ~130 proof rules and ~360 rewrite rules
- Proof and rewrite rules must be formalized in Lean!
- Three approaches:
 - Theorems: prove a theorem capturing a proof rule/rewrite rule
 - Tactics: repeated application of a set of theorems
 - Reflection: normalization steps

Proof Reconstruction: Theorems

The most straightforward approach is to formalize and prove a theorem capturing a proof rule/rewrite rule (e.g. **RESOLUTION**)

$$\frac{C_1, C_2 \mid pol, L}{C}$$

where

- C_1 and C_2 are CNF clauses
- *pol* is either ⊤ or ⊥, representing the polarity of the pivot on the first clause
- L is the pivot of the resolution, which occurs as is (resp. under a NOT) in C_1 and negatively (as is) in if $pol = \top (pol = \bot)$

theorem orN_resolution

(hps : orN ps) (hqs : orN qs)

(hi : i < ps.length)</pre>

(hj : j < qs.length)</pre>

(hij : $ps[i] = \neg qs[j]$) :

orN (ps.eraseIdx i ++ qs.eraseIdx j)

Proof Reconstruction: Tactics

- In some cases where the formalization of the process is too complex, we write a tactic
- Example: **QUANT_MINISCOPE_AND** rewrite rule $\forall X. F_1 \land \dots \land F_n = (\forall X. F_1) \land \dots \land (\forall X. F_n)$
- *X* denotes a multiple variables!
- This involves two key theorems
 theorem miniscope_andN {ps : List (α → Prop)} :
 (∀ x, andN (ps.map (⋅ x))) = andN (ps.map (∀ x, ⋅ x))
 theorem forall_congr {α : Sort u} {p q : α → Prop} (h : ∀ a, p a = q a) :
 (∀ a, p a) = (∀ a, q a)
- Iteratively apply the two theorems, peeling one variable at a time
 example : (∀ x y, p x y ∧ q x y) = ((∀ x y, p x y) ∧ (∀ x y, q x y)) := by smt

Proof Reconstruction: Reflection

- Verified programs allow us to prove correctness properties about an executable program
- poly_norm normalizes polynomials (up to distrib., assoc., and comm.)
 example (x y : Int) (z : Real) : 1 * 1(x + y) * z / 4 = 1 / (2 * 2) * (z * 1y + 1x * z) := by poly_norm
- poly_norm completely expands polynomials into a sum of monomials
- Variables in monomials are defined as List Nat allowing them to be compared easily
- Our implementation proves theorems pushing evaluation into each operator.
 theorem denote_mul {m₁ m₂ : Monomial} : (m₁.mul m₂).denote ctx = m₁.denote ctx * m₂.denote ctx
 theorem denote_add {p₁ p₂ : Polynomial} : (p₁.add p₂).denote ctx = p₁.denote ctx + p₂.denote ctx
- And a correctness theorem

theorem denote_eq_from_toPolynomial_eq {e1 e2 : RealExpr}

(h : e₁.toPolynomial = e₂.toPolynomial) : e₁.denote ictx rctx = e₂.denote ictx rctx

Current Status & Evaluation

- Supports UFs, linear integer/real arithmetic, and quantifiers
- No benchmarks for Lean (in progress!)
- Tested on Isabelle benchmarks from previous publications
- In SMT-LIB format (1 minute timeout)

Benchmark Set	Reconstruction Succeeded	Solved by cvc5	Total Number of Benchmarks
SledgeHammer	1722	1750	4260
17 Provers	2762	2812	5000
Total	4484	4562	9260

Next Steps

- Create a benchmark set for Lean!
- Support more theories (BitVec, Datatypes, etc.)
- Support more proof rules (current state: 180 rules)
- Add more preprocessing steps (reduce papercuts)
- Improve integration with Lean-auto
- Work towards a Sledgehammer in Lean
 - described as "the difference between walking and running" (L Paulson).

ベホスグ

Questions?