
Lean-SMT: Integration of Theorem
Provers with SMT Solvers

Haniel Barbosa, Clark Barrett, Tomaz Gomes, Harun Khan,
Abdalrhman Mohamed, Andrew Reynolds, Cesare Tinelli

Motivation

Suppose we encounter this in the Lean theorem prover:

x z: ℤ
hxz: x + z < 2
f: ℤ → ℤ
hz: 0 < z
hx: 0 ≤ x
⊢ ∀ (y : ℤ), f (x + y) = f y

Wouldn’t it be great if we

could automate tedious

formalization with just one

command?

2

• Powerful automation tactics
• 40% of Mizar Math library

• 47% of Flyspeck libraries (HOL Light)

• Similar results in Isabelle

• Integrate ATPs into proof assistants
• SMT, Superposition, tableau

• Components
• Premise selector

• Translation module (into ATP’s logic)

• Proof reconstruction module

• Implement highlighted portion in Lean

• Use cvc5!

Hammers

3

Borrowed from Magnushammer paper.

A tactic that integrates cvc5 and Lean would benefit both worlds

The Lean-SMT Tactic

Verifies

Solves

4

Tactic Workflow

UNSAT Proof

Original Goal

SMT-LIB Query

Simplified Goal
Preprocess

Translate
Reconstruct

5

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

⊢ ∀ (G : Type u) [Group G] (e : G),
 (∀ (a : G), e * a = a) e = 1

Identity element is unique in any group 𝐺!

Original Lean Goal

SMT-LIB does not support quantifying over Types and Type classes!!!

6

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

• Lean’s type system is very rich!

• SMT-LIB is based on FOL (with limited HOL)

• Utilize Lean-auto!
• Very helpful, but not enough!

• Theories are minimal
• Do not support every operation and sort

• Reduce papercuts:
• Replace 𝑝 𝑞 with 𝑝 = 𝑞
• Embed Bool into Prop
• Embed Nat into Int
• Etc.

UF

NIA

LRA

FOL

Lean’s Type System

HOL

Type
ClassesDependent

Types

7

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

⊢ ∀ (G : Type u) [Group G] (e : G),
 (∀ (a : G), e * a = a) e = 1

Identity element is unique in any group 𝐺!

G: Type u
inst: Group G
e e': G
op: G → G → G
inv: G → G
one_mul: ∀ (a : G), op e a = a
inv_mul_cancel: ∀ (a : G), op (inv a) a = e
mul_assoc: ∀ (a b c : G),
op (op a b) c = op a (op b c)

⊢ (∀ (a : G), (op e' a = a)) = (e' = e)

Original Lean Goal Preprocessed Lean Goal

8

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

(declare-sort G 0)
(declare-const e G)
(declare-const |e'| G)
(declare-fun op (G G) G)
(declare-fun inv (G) G)
(assert (forall ((a G)) (= (op e a) a)))
(assert (forall ((a G))
 (= (op (inv a) a) e)))
(assert (forall ((a G) (b G) (c G))
 (= (op (op a b) c)
 (op a (op b c)))))))
(assert (distinct
 (forall ((a G)) (= (op |e'| a) a)
 (= |e'| e))))
(check-sat)

G: Type u
inst: Group G
e e': G
op: G → G → G
inv: G → G
one_mul: ∀ (a : G), op e a = a
inv_mul_cancel: ∀ (a : G), op (inv a) a = e
mul_assoc: ∀ (a b c : G),
op (op a b) c = op a (op b c)

⊢ (∀ (a : G), (op e' a = a)) = (e' = e)

Translation is sound because 𝐺 is nonempty!

Preprocessed Lean Goal SMT-LIB Query

9

(declare-sort G 0)
(declare-const e G)
(declare-const |e'| G)
(declare-fun op (G G) G)
(declare-fun inv (G) G)
(assert (forall ((a G)) (= (op e a) a)))
(assert (forall ((a G))
 (= (op (inv a) a) e)))
(assert (forall ((a G) (b G) (c G))
 (= (op (op a b) c)
 (op a (op b c)))))))
(assert (distinct
 (forall ((a G)) (= (op |e'| a) a)
 (= |e'| e))))
(check-sat)

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

(define @t1 () (eo::var "a" G))
(define @t2 () (op e @t1))
...
(assume @p1 (forall @t3 (= @t2 @t1)))
(assume @p2 (forall @t3 (= @t4 e)))
(assume @p3 @t8)
(assume @p4 (not (= (forall @t3 (= @t9 @t1))
 (= |e'| e))))
(step @p5 :rule quant-merge-prenex
 :args ((= @t8 @t10)))
(step @p6 :rule eq_resolve
 :premises (@p3 @p5))
(step @p7 :rule eq-symm :args (@t4 e))
(step @p8 :rule cong :premises (@p7)
 :args ((forall ((a G)))))
...

SMT-LIB Query cvc5 Proof (CPC)

10

(define @t1 () (eo::var "a" G))
(define @t2 () (op e @t1))
...
(assume @p1 (forall @t3 (= @t2 @t1)))
(assume @p2 (forall @t3 (= @t4 e)))
(assume @p3 @t8)
(assume @p4 (not (= (forall @t3 (= @t9 @t1))
 (= |e'| e))))
(step @p5 :rule quant-merge-prenex
 :args ((= @t8 @t10)))
(step @p6 :rule eq_resolve
 :premises (@p3 @p5))
(step @p7 :rule eq-symm :args (@t4 e))
(step @p8 :rule cong :premises (@p7)
 :args ((forall ((a G)))))
...

Preprocessing Translation Solving Reconstruction

Lean-SMT’s Pipeline

have a0 : e = op (inv e') e' := by assumption
have a1 : e' = op e' e' := by assumption
...
have s2 : inv e' = inv e' := Eq.refl (inv e')
have s3 : op e' e' = e' := Eq.symm a1
have s4 : op (inv e') (op e' e') =
 op (inv e') e' :=
 congr (congr (Eq.refl op) (Eq.refl (inv e')))
 (Eq.symm a.17)
have s5 : op (inv e') e' = e := Eq.symm a0
have s6 : op (inv e') (op e' e') = e :=
 Eq.trans (congr (congr (Eq.refl op)
 (Eq.refl (inv e')))
 (Eq.symm a1)) (Eq.symm a0)
have s7 : e' = e' := Eq.refl e'
...

cvc5 Proof (CPC) Lean Proof

Check with Lean’s Kernel!!! 11

Overall Architecture

SMT Query

Preprocessor

Input F

Postprocessor

Proof (Lean)

Reconstructor

Proof (CPC)

cvc5

Input F’

Proof (Lean)

Translator

Preprocessing
Proof

cvc5’s Lean API

one-to-one

Lean-SMT Tactic

Minimal!

12

Reconstruction: Proof Replay vs. Verified Checker

Proof Replay

• Reconstructs proofs inference-
by-inference inside the proof
assistant

• Example: Isabelle
SledgeHammer

• Pro: easy to implement and
modify

• Con: slower

• Our approach!
• No standard SMT proof format
• cvc5 proof rules are not stable

Verified Checker

• Proofs are checked within the
proof assistant yielding a proof
by reflection rather than
simulation

• Example: SMTCoq

• Pro: fast

• Con: hard to implement and
modify

13

• A cvc5 proof is a sequence of steps (instantiations of proofs rules)

• There are ~130 proof rules and ~360 rewrite rules

• Proof and rewrite rules must be formalized in Lean!

• Three approaches:

• Theorems: prove a theorem capturing a proof rule/rewrite rule

• Tactics: repeated application of a set of theorems

• Reflection: normalization steps

Proof Reconstruction

14

Proof Reconstruction: Theorems

theorem orN_resolution

 (hps : orN ps) (hqs : orN qs)

 (hi : i < ps.length)

 (hj : j < qs.length)

 (hij : ps[i] = ¬qs[j]) :

 orN (ps.eraseIdx i ++ qs.eraseIdx j)

The most straightforward approach is to formalize and prove a theorem
capturing a proof rule/rewrite rule (e.g. RESOLUTION)

𝐶1, 𝐶2 ∣ 𝑝𝑜𝑙, 𝐿

𝐶
where

• 𝐶1 and 𝐶2 are CNF clauses

• 𝑝𝑜𝑙 is either ⊤ or ⊥, representing the
polarity of the pivot on the first clause

• 𝐿 is the pivot of the resolution, which
occurs as is (resp. under a NOT) in 𝐶1 and
negatively (as is) in if 𝑝𝑜𝑙 = ⊤ (𝑝𝑜𝑙 =⊥)

15

• In some cases where the formalization of the process is too complex, we write a tactic

• Example: QUANT_MINISCOPE_AND rewrite rule
∀𝑋. 𝐹1 ∧ ⋯ ∧ 𝐹𝑛 = ∀𝑋. 𝐹1 ∧ ⋯ ∧ ∀𝑋. 𝐹𝑛

• 𝑋 denotes a multiple variables!

• This involves two key theorems

theorem miniscope_andN {ps : List (α → Prop)} :

 (∀ x, andN (ps.map (· x))) = andN (ps.map (∀ x, · x))

theorem forall_congr {α : Sort u} {p q : α → Prop} (h : ∀ a, p a = q a) :

(∀ a, p a) = (∀ a, q a)

• Iteratively apply the two theorems, peeling one variable at a time

example : (∀ x y, p x y ∧ q x y) = ((∀ x y, p x y) ∧ (∀ x y, q x y)) := by

smt

Proof Reconstruction: Tactics

16

• Verified programs allow us to prove correctness properties about an executable program

• poly_norm normalizes polynomials (up to distrib., assoc., and comm.)
example (x y : Int) (z : Real) : 1 * ↑(x + y) * z / 4 = 1 / (2 * 2) * (z * ↑y + ↑x * z) := by

 poly_norm

• poly_norm completely expands polynomials into a sum of monomials

• Variables in monomials are defined as List Nat allowing them to be compared easily

• Our implementation proves theorems pushing evaluation into each operator.
theorem denote_mul {m₁ m₂ : Monomial} : (m₁.mul m₂).denote ctx = m₁.denote ctx * m₂.denote ctx

theorem denote_add {p₁ p₂ : Polynomial} : (p₁.add p₂).denote ctx = p₁.denote ctx + p₂.denote ctx

• And a correctness theorem
theorem denote_eq_from_toPolynomial_eq {e₁ e₂ : RealExpr}

 (h : e₁.toPolynomial = e₂.toPolynomial) : e₁.denote ictx rctx = e₂.denote ictx rctx

Proof Reconstruction: Reflection

17

Demo!

• Supports UFs, linear integer/real arithmetic, and quantifiers

• No benchmarks for Lean (in progress!)

• Tested on Isabelle benchmarks from previous publications

• In SMT-LIB format (1 minute timeout)

Current Status & Evaluation

Benchmark Set Reconstruction
Succeeded

Solved by cvc5 Total Number of
Benchmarks

SledgeHammer 1722 1750 4260

17 Provers 2762 2812 5000

Total 4484 4562 9260

19

• Create a benchmark set for Lean!

• Support more theories (BitVec, Datatypes, etc.)

• Support more proof rules (current state: 180 rules)

• Add more preprocessing steps (reduce papercuts)

• Improve integration with Lean-auto

• Work towards a Sledgehammer in Lean
• described as “the difference between walking and running” (L Paulson).

Next Steps

20

Questions?

	Slide 1
	Slide 2: Motivation
	Slide 3: Hammers
	Slide 4: The Lean-SMT Tactic
	Slide 5: Tactic Workflow
	Slide 6: Lean-SMT’s Pipeline
	Slide 7: Lean-SMT’s Pipeline
	Slide 8: Lean-SMT’s Pipeline
	Slide 9: Lean-SMT’s Pipeline
	Slide 10: Lean-SMT’s Pipeline
	Slide 11: Lean-SMT’s Pipeline
	Slide 12: Overall Architecture
	Slide 13: Reconstruction: Proof Replay vs. Verified Checker
	Slide 14: Proof Reconstruction
	Slide 15: Proof Reconstruction: Theorems
	Slide 16: Proof Reconstruction: Tactics
	Slide 17: Proof Reconstruction: Reflection
	Slide 18: Demo!
	Slide 19: Current Status & Evaluation
	Slide 20: Next Steps
	Slide 21: Questions?

