LSUMBC - .
VN

a (B:irz)ec?eﬁi:cal and \/
8 Environmental THEOREM PROVER

Engineering

Lean for Scientists and Engineers

Tyler R.Josephson
Al & Theory-Oriented Molecular Science (ATOMS) Lab
University of Maryland, Baltimore County

Closer to You

Twitter: @trjosephson .
P Stessie

Email: tjo@umbc.edu

https://twitter.com/trjosephson

Lean for Scientists and Engineers 2024

|. Logic and proofs for scientists and engineers
|. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
|. Functional vs.imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing

Logic and proofs for scientists and engineers

SChedUIG (tentative) Functional programming in Lean 4

July 9,2024

July 10, 2024
July 16,2024
July 17,2024
July 23,2024
July 24,2024
July 30-31,2024
August 6, 2024
August 8,2024
August 13,2024
August 14,2024
August 20,2024
August 21,2024

Provably-correct programs for scientific computing
Introduction to Lean and proofs

Equalities and inequalities

Proofs with structure Content inspired by:
Mechanics of Proof, by Heather Macbeth

Proofs with structure || , L , -
Functional Programming in Lean, by David Christiansen

Proofs about functions; types

Calculus-based-proofs

Prof. Josephson traveling

Functions, definitions, structures, recursion

Polymorphic functions for floats and reals, compiling Lean to C
Input / output, lists, arrays, and indexing

Lists, arrays, indexing, and matrices

LeanMD & BET Analysis in Lean

SciLean tutorial, by Tomas Skrivan

Guest instructor: Tomas Skrivan

Schedule for today

|. Recap Lectures |-6
|. Especially functions

2. Functional vs.imperative programming

3. Recursion basics
|. Factorial
2. Head vs. tail
3. Summation

4. The halting problem
5. Structures

Extra recommended resource:
https://busy-beavers.tigyog.app/proofs-about-programs

Schedule for VWednesday

* Recap Lecture 7
* Polymorphic functions
* Lists and arrays

* Recursion over lists

START TIME 2:00 ET, not 1:00 ET

Slide from Lecture 1

A vision for bug-free scientific computing

Selsam, Liang, Dill, “Developing Bug-Free Machine Learning Systems with Formal Mathematics,” ICML 201 7.

Standard method: test code empirically

S Debug \

Program [—> Test [—

Code that
passes tests

Our method: verify code mathematically

S Debug \

Specify —* Program —* Prove —

Code with
correct math

Errors in scientific computing software

Category of
error
Syntax

Runtime

Semantic

Floating point /
Round off

Example

Not closing
parentheses

Accessing element in
list that doesn’t exist

Missing a minus sign,
transposing tensor
indices

Subtracting small
values from large
values

Intervention Lean
Editor Editor
Run the program, program gives error Editor
message
Human inspection of the code; test- Editor

driven development; observing
anomalous behavior

Checking energy conservation

Derivations in science are math proofs

a

wisels

Langmuir Adsorption KMaSS balance

Langmuir, JACS, 1918

4 Theorem

{ Proposition J is TRUE
-

Proposition
5 premises imply conjecture
—p
Site balance: So=5+185.
gdsorpl:.lon raze mo(cilell: Tads = Zads : Z - S . S, Keqp
: es — Nhdes " Pa EE—— -
€S0orption rate mode rd d 1 _|_ Keqp
Equilibrium assumption: 7,45 = Tdes
q = Sa
N € N
Proof v
.. : : : : v
Derivation using algebraic manipulations , ——
(substitution, cancelling terms, etc.) v
4 (¥)

Syntax and semantics in scientific computing

g Losically valid S All possible\
{ oglcatly vat]< Y™ combinations
Pure math g statements of symbols/
\ 4
Scientific models | Symbolic models | Computable
J models
Scientific software [Code }
\ 4

Reality 4{ Reality J

Syntax and semantics in scientific computing

Traditionally, the
validity of the
mathematics and the
scientific theory are
established by hand

/

_

N
' : All possible

[ogica ly vald] > Y combinations

statements
of symbols
\ 4
Symbolic models) Computable
J models

J

Humans read the theory
and write the code as
best as they can

|

Code

J

and manual means to

Then use various automated {

compare to experiment

A 4

Reality J

Syntax and semantics in scientific computing

g _ ; All possible\
[Logically valid] Syntax L

< combinations
Can we represent all Statements of symbols
of this in Lean, and N -
validate the .
construction of the [Symbolic models } { Computable J
math, scientific models, J models
and software, in one
system! [}

Code
Then use various automated Y
and manual means to 4{ Reality J

compare to experiment

Polymorphic functions to bridge floats and reals

Adsorption data —| focus on “BET
regime”

Filter data to : :
| Linearize the

raw data

Perform linear

Floating point numbers
Polymorphic functions

Real numbers
R Formal proof of BET Theory

U CP
q f—
(po —p)(1 + (¢ = 1)(p/po))
follows from a body of assumptions about

(o]

V=VOZiSi

53 L

Seo

s .
2 s; = Cx's,
S1

So

BET Adsorption

a2

I

Proof that algebra
—> for linearization is

regression
minimizes least

squares error
correct

Proof that output corresponds
to meaningful parameters

Proof that linear

Fitted

regression coefficients

a

Definitions

* Allow us to reuse terms outside of individual examples / theorems
* Facilitates modular code and verification of different parts of code
* Propositions

* Functions

Slide from Lecture 5

Functions: Programming vs. Math

Programming perspective Math perspective

A function takes arguments, performs
calculations, and produces an output

A function maps values from a domain
to a co-domain

Examples in Python

def squared(x):
y = X*X
return y

Slide from Lecture 5

Functions: Programming vs. Math

def squareroot(x):

X f(a) =z

return y

Not always a function!
With type Z — Z or R — R, there is no

f XY mappmg fromthe x <0 pal’t of the domain

Domain With type N — R or R — C, it is a function;

Co-domain every part of the domain maps to a value in
the co-domain

Slide from Lecture 6

Functions: Programming vs. Math

def division(x,y): X
z = xly f (CE) y) -
return z Y

Not a function!
Typeis R - R —> R
Everyplace in the domain maps to an place in

f XY the codomain, except fory = 0
So... what do you do!
: X
Domain y#0 flzy)=-
Co-domain Y

y=0 flz,y) =0

https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/

Glossary

* Equation
* Proposition about equality statement

* Formula

* Proposition about expressions, includes equalities, inequalities, as well as
logical operators

* Expression
* Like the “right hand side” of an equation
* Type depends on the types and operations of things inside

* Function (aka pure function)
* An expression that maps from domain to co-domain

* Partial function
* An expression that maps from part of domain to co-domain

Functions in Lean

* Further discussion in Lecture 7

* No parentheses needed — just a space will do
* f(x) is written as f x

* We can prove things about pure functions;it’s much harder with
partial functions

* Lean requires you to label “noncomputable” functions

* Noncomputable means “incapable of being computed by any algorithm in a
finite amount of time”

* Real.pi is noncomputable

A guide to number systems

N - Natural numbers (0, I, 2, 3,4, ...)

Z - Integers (... -3,-2,-1,0, 1,2, ...)

Q - Rational numbers (1/2, 3/4, 5/9, etc.)

R - Real numbers (-1, 3.6, 1, V2)

C - Complex numbers (-1,5 + 2i,v/2 + 5i, etc.)
~

[N lz @ J]R }@

)

Programming Paradigms

Imperative

 Emphasizes how to solve .

e State and Mutation: Variables can be .
changed after they are set

* Procedural Style: Follows a sequence .

of steps to achieve a result

Control Flow: Uses loops, conditionals, .
and other control structures

Side Effects: Functions or methods can .
modify global state or have other side
effects

Examples: Python, Java, most languages ¢

Functional

Emphasizes what to solve

Immutability: Variables, once assigned,
cannot be changed

Declarative Style: Focuses on defining and
declaring what things are

First-Class Functions: Functions can be
Passe_d as arguments, returned from other
unctions, and assigned to variables

Pure Functions: No side effects, given the
same input, always produces the same
output

Examples: Haskell, Lean 4!

It’s possible to write functional-style code in languages like Python
Lean 4 is purely functional; it doesn’t let you use imperative techniques

Mutability and Immutability in Python

Lists in Python are mutable:
a = [10, 20, 30]

alll = 80

print(a)

[10, 80, 30]

Tuples in Python are immutable:

b = (10, 20, 30)

b[1] = 80

TypeError: 'tuple' object does not
support item assignment

Something like mutation is possible

by creating a new variable:
b = (10, 20, 30)

c = (b[@], 80, b[2])
print(c)

(10, 80, 30)

Mutability — not allowed in Lean

* Declarations must be unique

def a : Float := 50.0

def a : Float := a + 10
Error: 'a' has already been declared

* Sometimes, a Lean tactic might generate a variable with the same name as one
already declared.When this happens, Lean renames the new one, adding a dagger t

Why is mutability so popular?

Efficiency
0.61 0.13 0.03 0.61 0.13 0.03
0.27 0.68 0.22 0.27 0.68 0.22
0.22 0.83 0.98 Multiply one 0.22 0.83 0.98
0.24 0.38 0.62 > 0.24 0.76 0.62
0.46 0.92 0.88 0.46 0.92 0.88
0.41 0.28 0.69 0.41 0.28 0.69
0.58 0.29 0.36 0.58 0.29 0.36
0.68 0.89 0.02 0.68 0.89 0.02
0.89 0.15 0.94 0.89 0.15 0.94

If this matrix is immutable, you need to re-copy the rest of the matrix!
In this case, 2x the memory and 30x the computational cost
Functional programming languages use various tricks to manage cost

Lean 4 introduced the “functional but in-place” paradigm
(see de Moura and Ullrich, CADE 2021 for more details)

Recursive functions

* Functions can call other functions
A function is recursive when it calls itself

* Python example: factorial function, n!

Imperative style Functional style
def factorial_loop(n): def factorial(n):
result = 1 1f n==0:
for i in range(1,n+1): return 1
result = resultxi else:

return result return nxfactorial(n-1)

Factorial function — for loop

Imperative style

def factorial_loop(n): factorial_loop(5)
result =1
for i in range(1,n+1): . Lt
result = resultxi 2 1 Eesu
return result 5 1 1
5 2 2
5 3 6
. 6 - yy 5 4 24
Potential for “side effects . 5 120

“result” holds a value in memory, which is

cc?‘nstant’l’y'belng overwr.ltten return 120
If “result” is a global variable, other parts of the

program might modify it

Factorial function — recursive

Functional style

def factorial(n):
if n==0:
return 1
else:
return nxfactorial(n-1)

Notice how the “stack” of calculations keeps increasing.
At scale, this creates memory issues.

This means this is not “tail recursive.’

factorial(h)

factorial(5)
5kfactorial(5-1)
5kxfactorial(4)
5%4xfactorial(3)
5%4x3%xfactorial(2)
5%4*x3%2*xfactorial(l)
5x4*x3x2*x1xfactorial(0Q)
5%4*x3%2%1*1

return 120

Factorial function — tail-recursive

Functional style

def factorial tail(n, acc=1):
if n ==
return acc
else:
return factorial tail(n-1, nxacc)

This tail-recursive function manages the “stack” so it
doesn’t blow up.

Almost always, tail-recursive functions perform better

factorial(h)

1)
5%1)

factorial(5,
4,
4,5)
3,
3,2
2,

(
factorial(
factorial(
factorial(5*4)
factorial(3,20)
factorial(2,20x%3)
factorial(2,60)
factorial(1l,60%2)
factorial(1,120)
factorial(o,120)

return 120

The halting problem

* Consider an arbitrary program in a programming language

* Will it stop running (halt) or will it run forever?

i =20 1 =20 1 = 20
while 1 < 10: while 1 < 10: while 1 < 10:
print 1 print 1i print 1
1=1+1 1=1-1 1=1-1
Halts Runs forever Halts

* You can prove a program halts by running and seeing it halt

* But, it’s hard to tell the difference between “runs a long time” and
“runs forever”

The halting problem

* Let’s consider recursive functions def factorial(n):
. 1f n==0:
* Does factorial(5) halt? return 1
else:

* How about factorial(20)?
* factorial(1523482)?

* What about factorial(-3)?
* factorial(-60)?

return nxfactorial(n-1)

You don’t need to finish running the program every time
You're using logic to figure this out!

Interlude: Pattern matching

def element : Nat - String

0
1

2

=>
=>
=>
=>

"Not an element"
"Hydrogen"
"Helium"

"Not an element"

Like “match ... case” in Python

Every entry in the domain must
be covered!

Learn more in FPIL |.5;TPIL 8

Recursion in Lean

This function works This function is broken
def factorial : N - N def not_factorial : N - N
| 0 => 1 | 0 => 1
| n +1 => (n + 1) *x factorial n | n + 1 => (n + 1) % not_factorial (n+1)

Check out the error message on not_factorial:

fail to show termination for not_factorial
with errors
structural recursion cannot be used:

In factorial, Lean automatically proves termination
via structural recursion, so this function is okay.

Lean-like recursion in Python

def factorial : N - N def factorial(n: int) —> int:
| 0 => 1 match n:
| n + 1 => (n + 1) % factorial n case 0:
return 1
case _

return n x factorial(n - 1)

Structures in Lean

* If you've used C++ before, structures in Lean are like structures in C++
* Something defined as a structure must have all fields defined

* Example |: points on an x-y plane
* Functional programming in Lean, |.4

* Example 2:atoms and molecules!

* Example 3: gas law thermodynamics

Structures in Lean

What if your “thing” has multiple parts! How can you define its type!

Structures are useful for this

Consider a “Point” on an xy plane with two values (FPIL 1.4)

Gas law thermodynamics with structures

Structure Definition Theorem

[thermo_system]—'[ideal_gas]

isobaric v

boyles_law
charles_law
avogadros_law

boyles_from_ideal_gas
charles_from_ideal_gas
avogadros_law_from_ideal_gas

isothermal

A

boyles_law_relation closed_system
charles_law_relation

avogadros_law_relation =
adiabatic

isolated_system

LU

boyles_law_relation’
charles_law_relation
avogadros_law_relation’

Y)

Fig. 3 Thermodynamic system in Lean. Here the thermo_system and ideal_gas are Lean structures that describe different kinds of thermo-
dynamic systems like isobaric, isochoric, isothermal etc. using Lean definitions to proof theorems relating to the gas laws.

https://github.com/ATOMSLab/LeanChemicalTheories/blob/0084 | fedb86c0af282f5 | S5edaZe83a525a42e048/src/thermo
dynamics/basic.lean - sorry, only in Lean 3 today

https://github.com/ATOMSLab/LeanChemicalTheories/blob/00841fedb86c0af282f515eda7e83a525a42e048/src/thermodynamics/basic.lean
https://github.com/ATOMSLab/LeanChemicalTheories/blob/00841fedb86c0af282f515eda7e83a525a42e048/src/thermodynamics/basic.lean

