
Tyler R. Josephson
AI & Theory-Oriented Molecular Science (ATOMS) Lab

University of Maryland, Baltimore County

Twitter: @trjosephson
Email: tjo@umbc.edu

Lean for Scientists and Engineers

Closer to You
Stessie

https://twitter.com/trjosephson

Lean for Scientists and Engineers 2024

1. Logic and proofs for scientists and engineers
1. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
1. Functional vs. imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing

Schedule (tentative)
July 9, 2024 Introduction to Lean and proofs

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, definitions, structures, recursion

August 8, 2024 Polymorphic functions for floats and reals, compiling Lean to C

August 13, 2024 Input / output, lists, arrays, and indexing

August 14, 2024 Lists, arrays, indexing, and matrices

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Logic and proofs for scientists and engineers
Functional programming in Lean 4
Provably-correct programs for scientific computing

Guest instructor: Tomáš Skřivan

Content inspired by:
Mechanics of Proof, by Heather Macbeth
Functional Programming in Lean, by David Christiansen

Schedule for today

1. Recap Lectures 1-6
1. Especially functions

2. Functional vs. imperative programming
3. Recursion basics

1. Factorial
2. Head vs. tail
3. Summation

4. The halting problem
5. Structures

Extra recommended resource:
https://busy-beavers.tigyog.app/proofs-about-programs

Schedule for Wednesday

• Recap Lecture 7
• Polymorphic functions
• Lists and arrays
• Recursion over lists

START TIME 2:00 ET, not 1:00 ET

A vision for bug-free scientific computing
Selsam, Liang, Dill, “Developing Bug-Free Machine Learning Systems with Formal Mathematics,” ICML 2017.

6Slide from Lecture 1

Errors in scientific computing software
Category of

error
Example Intervention Lean

Syntax Not closing
parentheses

Editor Editor

Runtime Accessing element in
list that doesn’t exist

Run the program, program gives error
message

Editor

Semantic Missing a minus sign,
transposing tensor

indices

Human inspection of the code; test-
driven development; observing

anomalous behavior

Editor

Floating point /
Round off

Subtracting small
values from large

values

Checking energy conservation

7Slide from Lecture 1

Proposition
5 premises conjectureimply

Derivations in science are math proofs

Langmuir Adsorption
Langmuir, JACS, 1918

Proof ü _____
ü _____
ü _____
ü _____

Derivation using algebraic manipulations
(substitution, cancelling terms, etc.)

Theorem

Proposition is TRUE

<latexit sha1_base64="AB5kYicBKZoy/SfXK0dcDZCOrEk=">AAADtXicjZJbi9NAFMeniZc13rr66MvB1iIIJanVFWFh1wv4IqzU7i40pUwm0+7QuWRnJkIJ+YS++ea3cZJG6UXEAyEn58z8f+ecnCTjzNgw/Nny/Bs3b90+uBPcvXf/wcP24aNzo3JN6JgorvRlgg3lTNKxZZbTy0xTLBJOL5Ll+yp/8Y1qw5T8alcZnQq8kGzOCLYuNDtsfY8TumCysDjJOdZlwZ2VQQ9Ooz70YMQshQRzLAl9C70AuqNZCMcwejGaFbHA9kqLApcldGHD4ngyzOy0UhlUKqepUTqriKCxExQqpbyWc9bVG0qpcVrHsNwNxSRVFrLmPVrjGkyNrFgvK9YH+p+slO6x1qGGsdvfRlPDPjjSx+uccZZolgvAxuSipv6rrV36lugrJ+pUPzup3xN3n2ut62rkWwV16/6DmMr0z7+btTthP6wN9p2ocTqosbNZ+0ecKpILKi3hjjuJQldMgbVlhNMyiHNDM0yWeEEnzpVYUDMt6q0r4ZmLpDBX2j3SQh3dvFFgYcxKJO5kVbbZzVXBv+UmuZ2/mRZMZrmlkqxB85yDVVCtMKRMU2L5yjmYaOZqBXKFNSbWLXrghhDttrzvnA/60ev+8Muwc/KuGccBeoKeoucoQkfoBH1CZ2iMiDfwLj3sJf6RP/VTf74+6rWaO4/RlvnqF2avHt8=</latexit>

A1. Site balance: S0 = S + Sa

A2. Adsorption rate model: rads = kads · p · S
A3. Desorption rate model: rdes = kdes · Sa

A4. Equilibrium assumption: rads = rdes

A5. Mass balance q = Sa

<latexit sha1_base64="5Silut7701UWfqQqFKjm+7OIsug=">AAACEHicbVDLSgMxFM34rPU16tJNsIiCUGbE10YouhHcVLQPaIchk2ba0EwmTTJCGeYT3Pgrblwo4talO//G9CFo64ELJ+fcS+49gWBUacf5smZm5+YXFnNL+eWV1bV1e2OzquJEYlLBMYtlPUCKMMpJRVPNSF1IgqKAkVrQvRz4tXsiFY35ne4L4kWozWlIMdJG8u29HjyHzVAinN76DoTXfkp6GYQiS1148PMUmW8XnKIzBJwm7pgUwBhl3/5stmKcRIRrzJBSDdcR2kuR1BQzkuWbiSIC4S5qk4ahHEVEeenwoAzuGqUFw1ia4hoO1d8TKYqU6keB6YyQ7qhJbyD+5zUSHZ55KeUi0YTj0UdhwqCO4SAd2KKSYM36hiAsqdkV4g4y6WiTYd6E4E6ePE2qh0X3pHh8c1QoXYzjyIFtsAP2gQtOQQlcgTKoAAwewBN4Aa/Wo/VsvVnvo9YZazyzBf7A+vgGc4Ca/w==</latexit>

q =
S0Keqp

1 +Keqp

8Slide from Lecture 1

All possible
combinations

of symbols

Logically valid
statements

Reality

Pure math
Syntax

Code

Scientific models Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Scientific software

Slide from Lecture 3

All possible
combinations

of symbols

Logically valid
statements

Syntax

Code

Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Traditionally, the
validity of the
mathematics and the
scientific theory are
established by hand

Humans read the theory
and write the code as
best as they can

Then use various automated
and manual means to
compare to experiment

Slide from Lecture 3

All possible
combinations

of symbols

Logically valid
statements

Syntax

Code

Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Can we represent all
of this in Lean, and
validate the
construction of the
math, scientific models,
and software, in one
system?

Then use various automated
and manual means to
compare to experiment

Slide from Lecture 3

Polymorphic functions to bridge floats and reals

Adsorption data
Filter data to
focus on “BET

regime”

Linearize the
raw data

Perform linear
regression

Fitted
coefficients

Proof that linear
regression

minimizes least
squares error

Proof that algebra
for linearization is

correct

Formal proof of BET Theory

follows from a body of assumptions about

<latexit sha1_base64="qGJr2BfNG7MrRouJGmSxxRyQAxs=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VIlNZEfG2EohuXFewD2hIm00k7dJKMM5NCCf0HN/6KGxeKuHXjzr9x2mahrQcuHM65l3vv8TijUtn2t5FZWFxaXsmu5tbWNza38ts7NRnFApMqjlgkGh6ShNGQVBVVjDS4ICjwGKl7/ZuxXx8QIWkU3qshJ+0AdUPqU4yUltz84QO8gi1fIJwM3ABiPkpM7tpFbpnOkYmLjmXyYy1Y1sjNF+ySPQGcJ05KCiBFxc1/tToRjgMSKsyQlE3H5qqdIKEoZmSUa8WScIT7qEuamoYoILKdTH4awQOtdKAfCV2hghP190SCAimHgac7A6R6ctYbi/95zVj5l+2EhjxWJMTTRX7MoIrgOCDYoYJgxYaaICyovhXiHtIBKR1jTofgzL48T2onJee8dHZ3Wihfp3FkwR7YByZwwAUog1tQAVWAwSN4Bq/gzXgyXox342PamjHSmV3wB8bnD99Wmv8=</latexit>

q =
vmcp

(p0 � p)(1 + (c� 1)(p/p0))

Proof that output corresponds
to meaningful parameters

Polymorphic functions
Floating point numbers

Real numbers

ℝ

12Slide from Lecture 1

Definitions

• Allow us to reuse terms outside of individual examples / theorems
• Facilitates modular code and verification of different parts of code
• Propositions
• Functions

Slide from Lecture 4

Functions: Programming vs. Math

Programming perspective

A function takes arguments, performs
calculations, and produces an output

Math perspective

A function maps values from a domain
to a co-domain

Examples in Python

def squared(x):
 y = x*x
 return y

Slide from Lecture 5

Functions: Programming vs. Math

Domain
Co-domain
Image

def squareroot(x):
 y = x**(1/2)
 return y

<latexit sha1_base64="EQlYbSdXL58M7/SpKWDUpFhDsHc=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKRC9C0IvHCOYBSQyzk9lkyOzDmV5NWPIfXjwo4tV/8ebfOEn2oIkFDUVVN91dbiSFRtv+tpaWV1bX1jMb2c2t7Z3d3N5+TYexYrzKQhmqhks1lyLgVRQoeSNSnPqu5HV3cD3x649caREGdziKeNunvUB4glE00r1XGJ6QS9LSDwrJsJPL20V7CrJInJTkIUWlk/tqdUMW+zxAJqnWTceOsJ1QhYJJPs62Ys0jyga0x5uGBtTnup1Mrx6TY6N0iRcqUwGSqfp7IqG+1iPfNZ0+xb6e9ybif14zRu+inYggipEHbLbIiyXBkEwiIF2hOEM5MoQyJcythPWpogxNUFkTgjP/8iKpnRadUrF0e5YvX6VxZOAQjqAADpxDGW6gAlVgoOAZXuHNerJerHfrY9a6ZKUzB/AH1ucP33yRew==</latexit>

f(x) =
p
x

Not always a function!
With type ℤ→ ℤ or ℝ→ ℝ, there is no

mapping from the x < 0 part of the domain

With type ℕ→ ℝ or ℝ→ ℂ, it is a function;
every part of the domain maps to a value in

the co-domain

Slide from Lecture 5

Functions: Programming vs. Math
def division(x,y):
 z = x/y
 return z

Not a function!
Type is ℝ→ ℝ→ ℝ

Everyplace in the domain maps to an place in
the codomain, except for y = 0

So… what do you do?
<latexit sha1_base64="TywTzsvDzhZxIj6a5ZgaWfqotmA=">AAACKHicbVDLSsNAFJ3UV42vqEs3g0WoICURqW7EohuXFewDmlIm00k7dDJJZybSEPI5bvwVNyKKdOuXOH0stPXAwOGcc7lzjxcxKpVtj43cyura+kZ+09za3tnds/YP6jKMBSY1HLJQND0kCaOc1BRVjDQjQVDgMdLwBncTv/FEhKQhf1RJRNoB6nHqU4yUljrWTQJdTobQhu5wGKMu9Iujs+QUXkPXFwinoyxNMui6ZqKl5ZDdsQp2yZ4CLhNnTgpgjmrHene7IY4DwhVmSMqWY0eqnSKhKGYkM91YkgjhAeqRlqYcBUS20+mhGTzRit4eCv24glP190SKAimTwNPJAKm+XPQm4n9eK1b+VTulPIoV4Xi2yI8ZVCGctAa7VBCsWKIJwoLqv0LcR7ogpbs1dQnO4snLpH5ecsql8sNFoXI7ryMPjsAxKAIHXIIKuAdVUAMYPINX8AE+jRfjzfgyxrNozpjPHII/ML5/APzGotg=</latexit>

y 6= 0 f(x, y) =
x

y

y = 0 f(x, y) = 0

<latexit sha1_base64="aJmRvbBn6gudfmTZiiyOZiDTKFY=">AAAB/XicbVDJSgNBEK2JW4zbuNy8NAYhgoQZkehFCHrxGMEskAyhp9OTNOlZ6O6RjMPgr3jxoIhX/8Obf2NnOWjig4LHe1VU1XMjzqSyrG8jt7S8srqWXy9sbG5t75i7ew0ZxoLQOgl5KFoulpSzgNYVU5y2IkGx73LadIc3Y7/5QIVkYXCvkog6Pu4HzGMEKy11zQOvNDpNTtAV6ngCk3SUpUnWNYtW2ZoALRJ7RoowQ61rfnV6IYl9GijCsZRt24qUk2KhGOE0K3RiSSNMhrhP25oG2KfSSSfXZ+hYKz3khUJXoNBE/T2RYl/KxHd1p4/VQM57Y/E/rx0r79JJWRDFigZkusiLOVIhGkeBekxQoniiCSaC6VsRGWCdgtKBFXQI9vzLi6RxVrYr5crdebF6PYsjD4dwBCWw4QKqcAs1qAOBR3iGV3gznowX4934mLbmjNnMPvyB8fkDgiaUqA==</latexit>

f(x, y) =
x

y

https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/

Domain
Co-domain
Image

Slide from Lecture 6

Glossary
• Equation
• Proposition about equality statement

• Formula
• Proposition about expressions, includes equalities, inequalities, as well as

logical operators
• Expression
• Like the “right hand side” of an equation
• Type depends on the types and operations of things inside

• Function (aka pure function)
• An expression that maps from domain to co-domain

• Partial function
• An expression that maps from part of domain to co-domain

Slide from Lecture 5

Functions in Lean

• Further discussion in Lecture 7
• No parentheses needed – just a space will do
• f(x) is written as f x

• We can prove things about pure functions; it’s much harder with
partial functions
• Lean requires you to label “noncomputable” functions
• Noncomputable means “incapable of being computed by any algorithm in a

finite amount of time”
• Real.pi is noncomputable

Slide from Lecture 6

A guide to number systems
ℕ - Natural numbers (0, 1, 2, 3, 4, …)
ℤ - Integers (… -3, -2, -1, 0, 1, 2, …)
ℚ - Rational numbers (1/2, 3/4, 5/9, etc.)
ℝ - Real numbers (-1, 3.6, π, √2)
ℂ - Complex numbers (-1, 5 + 2i, √2 + 5i, etc.)

ℕ ℤ ℚ ℝ ℂ

Slide from Lecture 1

Programming Paradigms
Imperative
• Emphasizes how to solve
• State and Mutation: Variables can be

changed after they are set
• Procedural Style: Follows a sequence

of steps to achieve a result
• Control Flow: Uses loops, conditionals,

and other control structures

• Side Effects: Functions or methods can
modify global state or have other side
effects

• Examples: Python, Java, most languages

Functional
• Emphasizes what to solve
• Immutability: Variables, once assigned,

cannot be changed
• Declarative Style: Focuses on defining and

declaring what things are
• First-Class Functions: Functions can be

passed as arguments, returned from other
functions, and assigned to variables

• Pure Functions: No side effects, given the
same input, always produces the same
output

• Examples: Haskell, Lean 4!

It’s possible to write functional-style code in languages like Python
Lean 4 is purely functional; it doesn’t let you use imperative techniques

Mutability and Immutability in Python
Lists in Python are mutable:
a = [10, 20, 30]
a[1] = 80
print(a)
[10, 80, 30]

Tuples in Python are immutable:
b = (10, 20, 30)
b[1] = 80
TypeError: 'tuple' object does not
support item assignment

Something like mutation is possible
by creating a new variable:
b = (10, 20, 30)
c = (b[0], 80, b[2])
print(c)
(10, 80, 30)

Mutability – not allowed in Lean

def a : Float := 50.0

def a : Float := a + 10
Error: 'a' has already been declared

• Declarations must be unique

• Sometimes, a Lean tactic might generate a variable with the same name as one
already declared. When this happens, Lean renames the new one, adding a dagger †

Why is mutability so popular?

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.38 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.76 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

Multiply one
element by 2

Efficiency

If this matrix is immutable, you need to re-copy the rest of the matrix!
In this case, 2x the memory and 30x the computational cost

Functional programming languages use various tricks to manage cost
Lean 4 introduced the “functional but in-place” paradigm
(see de Moura and Ullrich, CADE 2021 for more details)

Recursive functions

• Functions can call other functions
• A function is recursive when it calls itself
• Python example: factorial function, n!

def factorial(n):
 if n==0:
 return 1
 else:
 return n*factorial(n-1)

def factorial_loop(n):
 result = 1
 for i in range(1,n+1):
 result = result*i
 return result

Imperative style Functional style

Factorial function – for loop

def factorial_loop(n):
 result = 1
 for i in range(1,n+1):
 result = result*i
 return result

Imperative style

n i result
5 1
5 1 1
5 2 2
5 3 6
5 4 24
5 5 120

factorial_loop(5)

return 120

Potential for “side effects”

“result” holds a value in memory, which is
constantly being overwritten
If “result” is a global variable, other parts of the
program might modify it

Factorial function – recursive

def factorial(n):
 if n==0:
 return 1
 else:
 return n*factorial(n-1)

Functional style

factorial(5)
5*factorial(5-1)
5*factorial(4)
5*4*factorial(3)
5*4*3*factorial(2)
5*4*3*2*factorial(1)
5*4*3*2*1*factorial(0)
5*4*3*2*1*1

factorial(5)

return 120

Notice how the “stack” of calculations keeps increasing.
At scale, this creates memory issues.

This means this is not “tail recursive.”

Factorial function – tail-recursive

def factorial_tail(n, acc=1):
 if n == 0:
 return acc
 else:
 return factorial_tail(n-1, n*acc)

Functional style

factorial(5,1)
factorial(4,5*1)
factorial(4,5)
factorial(3,5*4)
factorial(3,20)
factorial(2,20*3)
factorial(2,60)
factorial(1,60*2)
factorial(1,120)
factorial(0,120)

factorial(5)

return 120

This tail-recursive function manages the “stack” so it
doesn’t blow up.

Almost always, tail-recursive functions perform better

The halting problem

• Consider an arbitrary program in a programming language
• Will it stop running (halt) or will it run forever?

• You can prove a program halts by running and seeing it halt
• But, it’s hard to tell the difference between “runs a long time” and

“runs forever”

i = 0
while i < 10:
 print i
 i = i + 1

i = 0
while i < 10:
 print i
 i = i - 1

i = 20
while i < 10:
 print i
 i = i - 1

Halts Runs forever Halts

The halting problem

• Let’s consider recursive functions
• Does factorial(5) halt?
• How about factorial(20)?
• factorial(1523482)?
• What about factorial(-3)?
• factorial(-60)?

def factorial(n):
 if n==0:
 return 1
 else:
 return n*factorial(n-1)

You don’t need to finish running the program every time
You’re using logic to figure this out!

Interlude: Pattern matching

def element : Nat → String
 | 0 => "Not an element"
 | 1 => "Hydrogen"
 | 2 => "Helium"
 | _ => "Not an element"

Like “match … case” in Python

Every entry in the domain must
be covered!

Learn more in FPIL 1.5; TPIL 8
0

Not an element

ℕ String
1 Hydrogen

2 Helium

3
97

Recursion in Lean

def factorial : ℕ → ℕ
 | 0 => 1
 | n + 1 => (n + 1) * factorial n

1

ℕ ℕ

1

def not_factorial : ℕ → ℕ
 | 0 => 1
 | n + 1 => (n + 1) * not_factorial (n+1)

This function works This function is broken

Check out the error message on not_factorial:

fail to show termination for not_factorial
with errors
structural recursion cannot be used:

In factorial, Lean automatically proves termination
via structural recursion, so this function is okay.

2

fac(3) 6

fac(2)

fac(1)

fac(0)

Lean-like recursion in Python

def factorial(n: int) -> int:
 match n:
 case 0:
 return 1
 case _:
 return n * factorial(n - 1)

def factorial : ℕ → ℕ
 | 0 => 1
 | n + 1 => (n + 1) * factorial n

Structures in Lean

• If you’ve used C++ before, structures in Lean are like structures in C++
• Something defined as a structure must have all fields defined
• Example 1: points on an x-y plane
• Functional programming in Lean, 1.4

• Example 2: atoms and molecules!
• Example 3: gas law thermodynamics

Structures in Lean
What if your “thing” has multiple parts? How can you define its type?
Structures are useful for this

Consider a “Point” on an xy plane with two values (FPIL 1.4)

Gas law thermodynamics with structures

https://github.com/ATOMSLab/LeanChemicalTheories/blob/00841fedb86c0af282f515eda7e83a525a42e048/src/thermo
dynamics/basic.lean - sorry, only in Lean 3 today

https://github.com/ATOMSLab/LeanChemicalTheories/blob/00841fedb86c0af282f515eda7e83a525a42e048/src/thermodynamics/basic.lean
https://github.com/ATOMSLab/LeanChemicalTheories/blob/00841fedb86c0af282f515eda7e83a525a42e048/src/thermodynamics/basic.lean

