
A Practical Guide to Writing Tactics in Lean
Daniel J. Velleman

Suppose you’re writing a proof in Lean, using tactic mode, and you invoke the assumption
tactic. Lean will search through the current context for a hypothesis that matches the goal
and, if it finds one, use it to complete the proof. How does Lean know how to do this?

The answer can be found in Lean’s library, in the file core/init.meta.tactic, which
contains this definition:

meta def assumption : tactic unit :=
do { ctx ← local_context,

t ← target,
H ← find_same_type t ctx,
exact H }

<|> fail "assumption tactic failed"

(You can find this file at https://leanprover-community.github.io/mathlib_docs/. On
the left, under core, click on init, then meta, then tactic.)

At the moment, this definition probably doesn’t mean much to you. The purpose of this
guide is to explain how tactics are defined in Lean so that you will be able to read definitions
like this and write definitions to create your own tactics. Here are some other resources that
you may find useful:

• A Tactic Writing Tutorial, which can be found here: https://leanprover-community.
github.io/extras/tactic_writing.html

• Chapters 6 and 7 of The Hitchhiker’s Guide to Logical Verification, by Baanen, Ben-
tkamp, Blanchette, Hölzl, and Limperg (https://github.com/blanchette/logical_
verification_2021/raw/main/hitchhikers_guide.pdf).

1 Preliminaries

Tactics are functions, so it may be helpful to review briefly some aspects of how functions
are defined in Lean. Here is a simple function definition:

def absval (n : int) : int :=
if n < 0 then - n else n

The definition is introduced by the keyword def. The name of the function is absval, it
takes an argument n of type int, and it returns an int. The return value is given by the
if-then-else expression in the second line.

A Lean function can call another function, so once we have defined the absval function,
we can define this function:

def abs_sum (m n : int) : int :=
(absval m) + (absval n)

An alternative way to define this function would be:

1



def abs_sum (m n : int) : int :=
do let avm := absval m,

let avn := absval n,
avm + avn

This version gives the illusion that the function is defined by a procedural program: first
absval m is computed and stored in the variable avm, then absval n is computed and stored
in avn, and finally avm and avn are added. This illusion can be helpful for writing complex
functions, but it is important to understand that it is only an illusion. In particular, the
syntax let . . . := . . . cannot stand on its own; it must be followed by a comma and then
another expression. Thus, for example, the following is ungrammatical:

def abs_sum (m n : int) : int :=
do if m < 0 then let avm := - m else let avm := m,

if n < 0 then let avn := - n else let avn := n,
avm + avn

WRONG!

The problem is that the then clause of the if-then-else construct is the incomplete ex-
pression let avm := - m. However, one could write:

def abs_sum (m n : int) : int :=
do let avm := if m < 0 then - m else m,

let avn := if n < 0 then - n else n,
avm + avn

2 Tactics

The art of writing tactics is called metaprogramming, and a tactic definition is introduced
by the keyword meta. Here is a very simple tactic:

meta def tactic.interactive.greet : tactic unit :=
tactic.trace "Good day"

This defines a tactic called tactic.interactive.greet. The tactic has type tactic unit;
we’ll explain what this means later. The body of the tactic consists of the line tactic.trace
"Good day", which tells Lean to display the message Good day to the user.

By putting this tactic in the tactic.interactive namespace, we allow a user who is
writing a proof in tactic mode to invoke the tactic by typing greet. To see this tactic in
action, type the definition above into a Lean file and then try this example:

example : true :=
begin

greet,
trivial

end

If you are using VS Code, then the word greet should have a squiggly green line under it,
and if you click on it you should see the message Good day from Lean.

Let’s try making the tactic a little more complicated. We begin by defining a function
that has a natural number argument and returns one of three different greetings:

2



def greeting (n : nat) : string :=
match n with

| 0 := "Good morning"
| 1 := "Good afternoon"
| _ := "Good evening"

end

Now we can rewrite the tactic like this:

meta def tactic.interactive.greet (n : nat) : tactic unit :=
tactic.trace (greeting n)

Returning to the example above, we will need to specify a natural number argument for the
greet tactic. To get Lean to greet you with Good morning, we would rewrite the example
like this:

example : true :=
begin

greet 0,
trivial

end

Change greet 0 to greet 1 to get Lean to say Good afternoon, and use greet 2 for
Good evening.

Like function definitions, tactic definitions can also be written in a way that simulates
procedural programming. To write a tactic definition in this simulated procedural style, we
use the keyword do followed by a sequence of commands, separated by commas. Here is our
greet tactic, rewritten in this style:

meta def tactic.interactive.greet (n : int) : tactic unit :=
do let g := greeting n,

tactic.trace g

This tactic definition illustrates that a tactic can call a function and use the function’s
return value. A tactic can also call another tactic and use that tactic’s return value, but
the situation is more complicated because of some differences between tactics and ordinary
functions. Unlike an ordinary function, a tactic can access the current context of the proof
being written—that is, the list of goals remaining to be established to complete the proof
and the hypotheses in effect for those goals. A tactic can change this context—for example,
by adding or removing a hypothesis or changing a goal. And a tactic can fail—if you have
been writing proofs in tactic mode, you have no doubt experienced a tactic failing. These
differences make it more complicated for a tactic to call another tactic and use its return
value.

Suppose, for example, that you want to define a tactic that first calls some tactic T that
returns a value and then does some further processing with that returned value. The tactic
T might change the proof context, and those changes must be passed on to the next step of
your tactic, along with the value returned by T. And T might fail, in which case there will
be no returned value and your tactic will be unable to continue.

Let’s begin by illustrating the possibility that a tactic can fail. We’ll rewrite our greet
tactic, changing the greeting function to a tactic that may fail. This will require a number

3



of small changes to the definitions of greeting and greet. We’ll give the new definitions
first and explain the changes afterwards:

meta def greeting (n : int) : tactic string :=
match n with

| 0 := return "Good morning"
| 1 := return "Good afternoon"
| 2 := return "Good evening"
| _ := fail "Illegal input"

end

meta def tactic.interactive.greet (n : int) : tactic unit :=
do g ← greeting n,

tactic.trace g

Let’s run through the changes that have been made. The definition of greeting now
starts with the keyword meta, and the return type is now tactic string rather than string.
Think of this return type as meaning that when the tactic is applied in a proof context, it
produces a box that contains a string, together with all of the other information needed to
deal with the complications described earlier that arise when one tactic calls another. We’ll
call this a “tactic string box.” For example, the box must contain information about
how the proof context may have been changed by the greeting tactic, and it must contain
information about whether or not the tactic failed.

Since the return type of greeting is now tactic string rather than string, the cases
in the match statement must be changed. The string values corresponding to the different
values of n are now preceded by return. You could think of return "Good morning" as
meaning “put the string "Good morning" inside a tactic string box”; this tactic string

box is then what is returned when the greeting tactic is applied in a proof context. The
match statement also now has an additional case. If the argument n is anything other than
0, 1, or 2, then the tactic fails, with the failure message Illegal input.

Finally, in the greet tactic, we have written g ← greeting n rather than let g :=

greeting n. (In VS Code, type \l to get the symbol←.) You can think of this command as
meaning: “Invoke the tactic greeting n in the current proof context. If it succeeds, extract
the string value from the resulting tactic string box, assign that value to g, and then
pass on that value, along with the other information in the box, to the next step.”

There’s a lot going on here that has been left out of this description. If you want to know
more, I recommend Chapters 6 and 7 of The Hitchhiker’s Guide to Logical Verification. But
you don’t really need to know the details to be able to write tactics. You just need to know
that if you want to invoke a function f that returns a value of type α, then you should write
let x := f, followed by further steps that may use x, and if you want to invoke a tactic T
that returns a value of type tactic α, then you should write x ← T, followed by further
steps that may use x; in both cases, x will have type α.

If you try out the new version of the greet tactic, you should find that if you invoke the
tactic with any argument larger than 2, then the green squiggly line under greet will change
to red, and Lean will display the message Illegal input. In this case the execution of
the greet tactic stops as soon as the greeting tactic fails; the instruction tactic.trace g

does not get executed.

4



As with the let x := f construction, it is important to keep in mind that x ← T cannot
stand on its own, but must be followed by a comma and then further commands. So the
following example would be ungrammatical:

meta def tactic.interactive.wrong (b : bool) :
tactic unit :=

do if b then x ← greeting 0 else x ← greeting 1,
tactic.trace x

WRONG!

However, if you are tempted to write this, then you can probably get the effect you intended
like this:

meta def tactic.interactive.right (b : bool) : tactic unit :=
do x ← if b then greeting 0 else greeting 1,

tactic.trace x

There is an alternative notation that is sometimes useful for defining a tactic that involves
a sequence of steps. If A and B are tactics, then A >> B means the same thing as do A, B.
Also, if A has type tactic α and B takes an argument of type α, then A >>= B means the
same thing as do x ← A, B x. For example, we could rewrite the greet tactic like this:

meta def tactic.interactive.greet (n : nat) : tactic unit :=
greeting n >>= tactic.trace

This saves us the trouble of giving a name to the value returned by greeting n; that
nameless value is simply passed along to tactic.trace. While this notation is convenient
in simple cases, in more complex tactic definitions it is probably preferable to use the do

syntax.
We can now explain the type tactic unit of our greet tactic. The term unit here

is a type. There is only one object of type unit, and it contains no information; it is
denoted by (). The greet tactic thus produces a tactic unit box that contains this
informationless object (together, of course, with the information described earlier that makes
metaprogramming possible). Many tactics have no information to return, and are therefore
declared to have type tactic unit. In fact, tactic.trace is a tactic with type tactic

unit (it is defined in the same file core/init.meta.tactic that contains the definition of
assumption). Since the last step in our greet tactic is tactic.trace, the value produced by
this call to tactic.trace, which is a tactic unit box containing (), is the value returned
by greet.

3 Names, Expressions, and Pre-Expressions

So far we have not written a tactic that does anything useful. Before we can write useful
tactics, we will need to know about three types: name, expr, and pexpr, which represent
names, expressions, and pre-expressions.

Many things in Lean have names: variables, constants, functions, theorems, and so on.
Examples of names include x, nat, or.intro_left, and tactic.interactive.greet. There
is a special backtick notation for defining names: if you write let n := ‵x, then n will have
type name, and its value will be x. You can try it out as follows:

5



meta def tactic.interactive.trace_name : tactic unit :=
do let n := ‵x,

tactic.trace (to_string n)

example : true :=
begin

trace_name,
trivial

end

The type expr represents an expression in Lean, such as a proposition or a proof. There is
a similar backtick notation for defining expressions: the expression is enclosed in parentheses
and then preceded by a backtick. Here is a simple example:

meta def tactic.interactive.trace_expr : tactic unit :=
do let e : expr := ‵(true ∨ ¬ true),

tactic.trace (to_string e)

example : true :=
begin

trace_expr,
trivial

end

(Note that it is necessary to explicitly give e the type expr; otherwise it will have a type
that reduces to expr but is not the same as expr.) If you check the message generated by
the trace_expr tactic, you will see that it is or true (not true). This shows that the
value assigned to e is the parsed form of the expression true ∨ ¬ true: it is represented
as the function or applied first to the constant true and then to the result of applying the
function not to the constant true.

There is an important subtlety to the backtick notation for expressions. We can illustrate
it using the functions or.intro_left and or.inl. Recall that if ha is a proof of some
proposition a and b is another proposition, then or.intro_left b ha is a proof of a ∨ b;
in other words, it is an expression of type a ∨ b. For example, or.intro_left false

trivial has type true ∨ false, because trivial is a proof of true. You can confirm this
with the Lean command #check or.intro_left false trivial, which reports the type
of the expression.

It may appear that the function or.intro_left takes two arguments, but it actually
takes three. You can see this by giving the command #check @or.intro_left, which
reports that the type of or.intro_left is ∀ {a : Prop} (b : Prop), a → a ∨ b. In
other words, or.intro_left takes a proposition a, a proposition b, and a proof of a, and
returns a proof of a ∨ b. The curly braces around the first argument, the proposition a,
indicate that this argument is implicit. In the expression or.intro_left false trivial,
that argument has been left out, and when Lean interprets the expression, it infers the
missing first argument by a process called elaboration.

In many cases, Lean would be able to infer the second argument as well, so Lean has a
version of the or-introduction rule in which both of the first two arguments are implicit. The
command #check or.inl shows that the function or.inl has type ∀ {a b : Prop}, a

6



→ a ∨ b. Thus, if ha is a proof of a, then or.inl ha will be a proof of a ∨ b, where Lean
will try to infer b from the context. If you give the command #check or.inl trivial,
Lean reports that the expression or.inl trivial has type true ∨ ?M_1. The ?M_1 here is
a metavariable; it is a placeholder, indicating that Lean was unable to infer the proposition
b, so it has left it unspecified.

With that preparation, let’s investigate what happens if we use these expressions in
our trace_expr tactic. First try replacing ‵(true ∨ ¬ true) in the definition of the
trace_expr tactic with ‵(or.intro_left false trivial). When the trace_expr tactic
is invoked in the example proof, the message generated by the tactic.trace command is
or.intro_left true false trivial. Thus we see that Lean has elaborated the expression
and inferred (correctly) that the missing first argument is true.

Now try putting in ‵(or.inl trivial). In VS Code, there will be a squiggly red line
underneath or, and if you click on it, you will see the error message don’t know how to

synthesize placeholder. What’s going on here is that Lean tries to elaborate the expres-
sion inside the ‵(. . .) notation when it parses the definition of the tactic. If that elaboration
produces a metavariable, Lean reports an error. The lesson here is that the backtick nota-
tion for expressions can only be used for expressions whose elaboration does not produce
metavariables.

Does this mean that we can’t work with the expression or.inl trivial in a tactic? Not
at all. We just have to tell Lean not to try to elaborate it when it parses the definition of the
tactic. To do that, we put two backticks before the open parenthesis. Instead of an expr, we
get a pexpr; this type represents a pre-expression, which is just an unelaborated expression.
We can ask Lean to elaborate the pre-expression when the tactic is executed by invoking the
tactic tactic.to_expr, which takes an argument of type pexpr, elaborates it, and returns
the resulting expr. Here’s a version of our trace_expr tactic that illustrates this:

meta def tactic.interactive.trace_expr : tactic unit :=
do let p : pexpr := ‵‵(or.inl trivial),

e ← tactic.to_expr p,
tactic.trace ("The pre-expression is " ++ (to_string p)

++ " and the expression is " ++ (to_string e))

example : true :=
begin

trace_expr,
trivial,
exact false

end

Take a look at the message generated by this version of the trace_expr tactic. It should
be something like The pre-expression is or.inl trivial and the expression is

or.inl true ?_mlocal._fresh.800.574 trivial. We see that when Lean elaborated the
pre-expression, it was able to infer that the first implicit argument was true, but it generated
a metavariable for the second argument, which it was unable to infer. And notice something
else that has happened: after the trace_expr tactic is invoked, there are two goals required
to finish the proof: ⊢ true, which was the original goal of the example, and ⊢ Prop, which
is asking for a proposition to be supplied as the value of the metavariable. The trivial

7



tactic accomplishes the first goal, and exact false takes care of the second.
Let’s do one more experiment. In the last version of the trace_expr tactic, try changing

‵‵(or.inl trivial) to ‵‵(or.inl true). Now the invocation of trace_expr in the example
will have a red squiggle under it, and if you click on it you will see the error message type

mismatch at application. This indicates that the call to tactic.to_expr failed, because
true does not have the right type to be an argument of the function or.inl.

There is one more subtle point that is worth mentioning. An expression can consist of
just a single constant, as in the following example:

meta def tactic.interactive.trace_name_and_expr : tactic unit :=
do let n := ‵not,

let e : expr := ‵(not),
tactic.trace ("The name is " ++ (to_string n)

++ " and the expression is " ++ (to_string e))

example : true :=
begin

trace_name_and_expr,
trivial

end

The output is The name is not and the expression is not. It may appear that n and e

are the same, but they are different: n is the name not, whereas e is an expression consisting
of a single constant (whose name is not). This distinction will be important in the next
section.

In our last example, the argument of tactic.trace was a string constructed by com-
bining explicit strings, which appear in quotation marks, with expressions outside of those
quotation marks that compute strings. There is a similar mechanism, called antiquotation,
that allows us to compute expressions in a similar way. If x has type expr or pexpr, then in
a double-backtick specification of a pexpr we can use the notation %%x to indicate a place
where the expression that is the value of x should be inserted. Here is an example:

meta def tactic.interactive.trace_expr (l b : bool) : tactic unit :=
do let o : pexpr := if l then ‵‵(or.intro_left)

else ‵‵(or.intro_right),
let d : expr := if b then ‵(true) else ‵(false),
let p : pexpr := ‵‵(%%o %%d trivial),
e ← tactic.to_expr p,
tactic.trace (to_string e)

example : true :=
begin

trace_expr tt ff,
trivial

end

When the tactic is invoked with the arguments tt ff, as in the example above, o gets
the value ‵‵(or.intro_left) and d gets the value ‵(false). And when these values are
inserted at the positions marked by %%o and %%d, the pre-expression assigned to p ends up
being or.intro_left false trivial. This pre-expression is then elaborated to produce e,

8



which is the expression or.intro_left true false trivial. Try varying the arguments
passed to trace_expr to see how the results change.

Note that o had to be a pre-expression, because the elaboration of or.intro_left or
or.intro_right would introduce metavariables, and p had to be a pre-expression, because
p cannot be elaborated until execution time. In some cases, the antiquotation notation can
be used in a single-backtick specification of an expr, but usually we will want to use this
notation when defining a pexpr.

4 Accessing and Altering the Proof Context

We are finally ready to write tactics that do something useful. It may be helpful to have a
simple example in front of us, so consider this example:

example (p q : Prop) (h1 : ¬ (p ∧ q)) : ¬ p ∨ ¬ q

When you start writing this proof in tactic mode, the state looks like this:

p q : Prop
h1 : ¬ (p ∧ q)
⊢ ¬ p ∨ ¬ q

We begin by discussing tactics in Lean’s library that allow us to access the proof context.
The tactic tactic.target returns an expr that is the current goal—the proposition that
needs to be proven. To access a hypothesis, we must use the name of the hypothesis. The
tactic tactic.get_local takes an argument n of type name and returns an expr that is the
constant whose name is n. (Actually, in this case the expr is what is called a local constant.
As we saw in the last section, the name and the expression are not the same thing.) The
tactic tactic.infer_type takes an argument e of type expr and returns an expr that is
the type of e. Here is an example that illustrates the use of these tactics:

meta def tactic.interactive.access_context : tactic unit :=
do P ← tactic.get_local ‵p,

pt ← tactic.infer_type P,
H ← tactic.get_local ‵h1,
ht ← tactic.infer_type H,
g ← tactic.target,
tactic.trace ("The type of p is " ++ (to_string pt)

++ ", the type of h1 is " ++ (to_string ht)
++ ", and the goal is " ++ (to_string g))

Now we can try using the tactic in the example above:

example (p q : Prop) (h1 : ¬ (p ∧ q)) : ¬ p ∨ ¬ q :=
begin

access_context
end

The output is The type of p is Prop, the type of h1 is not (and p q), and the

goal is or (not p) (not q). (Since the types are returned as expressions, they are in
parsed form.)

9



Of course, it would be better if we didn’t have to hard code the names ‵p and ‵h1 in this
tactic. So you might try rewriting it like this:

meta def tactic.interactive.access_context
(h : name) : tactic unit :=

do H ← tactic.get_local h,
ht ← tactic.infer_type H,
g ← tactic.target,
tactic.trace ("The type of " ++ (to_string h)

++ " is " ++ (to_string ht)
++ " and the goal is " ++ (to_string g))

Unfortunately, if we invoke the tactic with access_context h1, we get the error message
unknown identifier ‘h1’. It would work to write access_context ‵h1, but we don’t want
users to have to know about backticks. A better idea is to tell Lean that the argument to
the access_context tactic should not be interpreted as an identifier; rather, we want the
name that results from parsing the argument as an identifier to be passed to the tactic. To
do this, we need to rewrite the declaration of the tactic. We can also save a little typing by
opening the tactic namespace:

open tactic
meta def tactic.interactive.access_context

(h : interactive.parse lean.parser.ident) : tactic unit :=
do H ← get_local h,

ht ← infer_type H,
g ← target,
trace ("The type of " ++ (to_string h)

++ " is " ++ (to_string ht)
++ " and the goal is " ++ (to_string g))

Now access_context h1 generates the output The type of h1 is not (and p q) and

the goal is or (not p) (not q).
To understand what’s going on here, it might be helpful note that the command #reduce

interactive.parse lean.parser.ident produces the output name. Thus, the argument
h in this tactic is a name, but by writing the type in this way we have told Lean to do the
parsing we want.

Now that we can access the context of the proof, how do we alter it? The easiest way is
to invoke the tactics that you are already familiar with from writing proofs in tactic mode.
For instance, consider the tactic have h : t := p, which adds the hypothesis h : t, if p is
a term of type t. If h is left out, then the new hypothesis is labeled this; if t is left out then
it is inferred from p; and if p is left out then t becomes a new goal that must be proven. In
the example above, the command have : ¬ p ∨ ¬ q := not_and_distrib.mp h1 would
cause Lean to infer the new hypothesis this : ¬ p ∨ ¬ q. (Note that you must import
logic.basic for the function not_and_distrib to be recognized.)

The tactic have is defined in Lean’s library (in the tactic.interactive namespace, of
course). It has three arguments, corresponding to h, t, and p in the last paragraph, and
their types are option name, option pexpr, and option pexpr, respectively. Using the
have tactic, we can finally write a tactic that does something useful:

open tactic

10



meta def tactic.interactive.dm
(h : interactive.parse lean.parser.ident) : tactic unit :=

do H ← get_local h,
t ← tactic.infer_type H,
match t with

| ‵(¬(%%l ∧ %%r)) := tactic.interactive.have none
‵‵(¬ %%l ∨ ¬ %%r) ‵‵(not_and_distrib.mp %%H)

| ‵(¬(%%l ∨ %%r)) := tactic.interactive.have none
‵‵(¬ %%l ∧ ¬ %%r) ‵‵(not_or_distrib.mp %%H)

| _ := fail "De Morgan′s laws don′t apply"
end

This tactic uses backtick notation and antiquotation for pattern matching. In the first
case of the match statement, if t has the form of the negation of a conjunction, then l and
r, which have type expr, are set equal to the left and right sides of the conjunction. These
expressions are then used to construct the pre-expressions that are passed to have. Similarly,
the second case handles negations of disjunctions. Each call to have infers a new hypothesis
labeled this by applying one of De Morgan’s laws. We can use this tactic to complete the
example at the beginning of this section:

example (p q : Prop) (h1 : ¬ (p ∧ q)) : ¬ p ∨ ¬ q :=
begin

dm h1,
exact this

end

The declaration of the have tactic (which can be found in the Lean library, in the file
core/init.meta.interactive) is:

meta def tactic.interactive.have
(h : interactive.parse lean.parser.ident?)
(q1 : interactive.parse

(lean.parser.tk ":" ∗> interactive.types.texpr)?)
(q2 : interactive.parse

(lean.parser.tk ":=" ∗> interactive.types.texpr)?)
: tactic unit

We have already explained that if a tactic has an argument that is declared to have type
interactive.parse lean.parser.ident, then the argument is simply a name, with the
complicated type expression instructing Lean to parse the user’s input to produce the name.
Putting a question mark after lean.parser.ident is defined in the library file to be a
shorthand for optional lean.parser.ident, so the type declaration for h means

(h : interactive.parse (optional lean.parser.ident))

As before, the command #reduce interactive.parse (optional lean.parser.ident)

can be used to determine that the type of h is option name.
To figure out the type of q1, you can give the command #reduce interactive.parse

(lean.parser.tk ":" ∗> interactive.types.texpr). The output is expr ff, which
means “expression that has not been elaborated.” This is the same as pexpr; indeed, #
reduce pexpr also produces the output expr ff. Again, adding a question mark makes

11



the argument optional, so the type of q1 is option pexpr. This time the instructions to the
parser tell the parser to look for the token “:” followed by a pre-expression. Similarly, the
type of q2 tells the parser to look for the token “:=” followed by a pre-expression, and the
argument is optional, so the type of q2 is also option pexpr.

If you are trying to use another tactic from the Lean library, look at the declaration in
the library file to determine what types of arguments to pass to the tactic. If necessary, you
can use the #reduce command to help you determine the types. For example, looking in the
library file core/init.meta.interactive we find that the declaration of the apply tactic
is:

meta def tactic.interactive.apply
(q : interactive.parse interactive.types.texpr) : tactic unit

This tells us that the argument has type pexpr. We will use this in our next version of the
dm tactic, which will apply one of De Morgan’s laws to either a hypothesis or the conclusion:

meta def tactic.interactive.dm
(n : interactive.parse

(optional (lean.parser.tk "at" ∗> lean.parser.ident)))
(l : interactive.parse

(optional (lean.parser.tk "with" ∗> lean.parser.ident)))
: tactic unit :=

match n with
| some h := do H ← get_local h,

t ← infer_type H,
let label := match l with

| some h := h
| none := ‵this

end,
match t with

| ‵(¬(%%l ∧ %%r)) := tactic.interactive.have label
‵‵(¬ %%l ∨ ¬ %%r) ‵‵(not_and_distrib.mp %%H)

| ‵(¬(%%l ∨ %%r)) := tactic.interactive.have label
‵‵(¬ %%l ∧ ¬ %%r) ‵‵(not_or_distrib.mp %%H)

| _ := fail "De Morgan′s laws don′t apply"
end

| none := do t ← target,
match t with

| ‵(¬(%%l ∧ %%r)) := tactic.interactive.apply
‵‵(not_and_distrib.mpr)

| ‵(¬(%%l ∨ %%r)) := tactic.interactive.apply
‵‵(not_or_distrib.mpr)

| _ := fail "De Morgan′s laws don′t apply"
end

end

The tactic now takes two arguments. The first argument n is an optional name, preceded
by the token “at”, specifying the hypothesis to which De Morgan’s law should be applied.
If this name is not included, the tactic operates on the goal. The second argument l is
an optional name preceded by the token “with”. If this name is supplied and the tactic is
applied to a hypothesis, then the name is used instead of this as the label of the inferred

12



statement. The tactic checks whether or not the first argument n was supplied. If so, it uses
the have tactic as before; if not, it uses the apply tactic to rewrite the goal using one of De
Morgan’s laws.

13


