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Last lecture

Welcome to the last Formalizing Fermat lecture, this week live from the
Hoskinson center in Pittsburgh.

As is clear to everyone, I have been experimenting all term trying to find the
right format for this class.

One thing I’ve noticed is that writing on the iPad was really slowing things
down.

So today it’s pdf slides.
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Summary of today

I’m going to talk about three things today.

1) Haar characters (how units in rings scale Haar measure; I talked about this
last time, but now I’m much clearer about exactly what we need).

2) Finite-dimensionality of relevant spaces of quaternionic modular forms;

3) Definition of the Hecke algebras acting on these spaces (short and easy).

Then people can go ahead and formalize stuff and I’ll hang around on the
Zoom call for questions.

Remark: the Hecke algebras are the “T ”s in the “R = T theorem” which we’re
going to formalize in the FLT project.
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Part 1: Haar characters.
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Haar characters

If R is a locally compact topological ring (doesn’t have to be commutative) then
(R,+) is a locally compact topological abelian group and hence has a Haar
measure µ (left and right measures are the same because + is commutative).

Now if u ∈ R× then left multiplication by u, x 7→ ux , is an additive isomorphism
(R,+) ∼= (R,+) and so it scales Haar measure by a positive real number
δR(u) ∈ R>0, or just δ(u) if R is clear.

Concretely: if X ⊆ R is measurable then µ(uX ) = δR(u)µ(X ).

Conversely, if X has positive and finite measure, then you can use the above
equation to get a formula for δR.

For example if you choose X such that µ(X ) = 1 then δR(u) = µ(uX ).
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Examples

Example: if R = R then δ(u) = |u|.

Proof: u ∗ [0,1] = [0,u] if u > 0 and this has length |u|.

And u ∗ [0,1] = [u,0] if u < 0 and this also has length |u|.

Example: if R = C then δ(u) = |u|2 (for example multiplication by 2 sends a
unit square to a square of area 4).

If R = Qp then δ(u) = |u|p, the usual p-adic norm.

If R is a finite extension of Qp then δ(u) is the norm on R normalised in the
following way: δ($) = q−1, where $ is a uniformiser and q is the size of the
(finite) residue field.

This is because if O is the integers of R then $O has index q in O, and thus O
is q times as big as $O.
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Finite-dimensional vector spaces over a
topological field

Now say F is a locally compact topological field (for example R or C or a finite
extension of Qp), and R is a finite-dimensional F -algebra, and let’s choose a
basis so R = F N as F -module (with a random multiplication).

Now for u ∈ R×, left multiplication by u can be thought of as an F -linear
endomorphism of F N , so it has a determinant.

One can check that it scales Haar measure on F N by δF (det(u)) (I think we
may even have this in mathlib).

In other words, δR(u) = δF (det(u)).
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The non-commutative case

If R is non-commutative, then suddenly it matters whether we’re doing left or
right multiplication.

Example: let R be upper-triangular 2× 2 matrices with real entries.

Then left multiplication by
(

2 0
0 1

)
sends

(
x y
0 z

)
to
(

2x 2y
0 z

)
, giving a scale

factor of 4, but right multiplication sends it to
(

2x y
0 z

)
, giving a scale factor of

only 2.

What’s going on here is that if we regard left and right multiplication as R-linear
maps from R to R, then their associated matrices wrt the obvious bases are
diag(2,2,1) and diag(2,1,1), which have different determinants.
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Central simple algebras

However, if F is a locally compact topological field and if B is a
finite-dimensional central simple algebra over F (for example a quaternion
algebra, the case we’ll care about later), and if u ∈ B× then x 7→ ux and
x 7→ xu are both F -linear endomorphisms of B ∼= F N and I claim that they have
the same determinant.

Let’s first check this for matrix algebras B = Mn(F ).

In this case, first one checks that both left and right multiplication by
g ∈ GLn(F ), regarded as endomorphisms of Mn(F ) = F n2

, have determinant
det(g)n.

(note a slightly confusing point: g is an n × n matrix but here we’re sometimes
regarding it as an n2 by n2 matrix).
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Central simple algebras

Now let’s imagine that F is a locally compact topological field and B is a
general finite-dimensional central simple algebra over F .

This implies that there’s some finite extension E/F such that B ⊗F E is
isomorphic to Mn(E) as E-algebras.

So if u ∈ B× (which now isn’t a matrix), left and right multiplication by u induce
two F -linear maps ul and ur : B → B which scale Haar measure by δF (det(ul))
and δF (det(ur )).

Now tensor up to E . Then u ⊗ 1 ∈ B ⊗F E = Mn(E) becomes a matrix with its
own intrinsic determinant d , and we just saw that det(ul) = dn = det(ur ).

Hence δF (det(ul)) = δF (det(ur )), and thus left and right multiplication by
elements of B× scale Haar measure by the same amount.
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Haar character

I’m not entirely sure what to call δ, but its existence relies on the distributivity
axiom, so we’ve called it distribHaarChar in the FLT Lean repo.

Easy to check: δR×S(r , s) = δR(r)× δS(s).

Another fun fact: if R is the restricted product of a bunch of topological rings Ri
over a bunch of compact open subrings Ci then µR(

∏
i xi) =

∏
i µRi (xi) and the

product is finite (in the sense that all but finitely many of the xi are in C×i and
hence xiCi = Ci and thus µ(xi) = 1).

Proof: look at what x does to
∏

i Ci (which has nonzero positive measure).
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Adeles

We have seen that if v is a place of Q (i.e., a prime number or +∞) then
δQv = | · |v .

We can deduce from this that if (xv )v ∈ A×Q then δAQ((xv )) =
∏

v |xv |v .

The product formula (on the way to mathlib) says that if x ∈ Q× then∏
v |x |v = 1.

(proof: if x = ±
∏

p pep then
∏

p |x |p =
∏

p p−ep and |x |∞ =
∏

p pep so they
cancel.)

Thus δAQ(Q×) = {1}.

12



Final
Formalizing

Fermat lecture

Kevin Buzzard

Introduction

Haar
characters

Quaternionic
modular forms

Hecke
operators

Generalization
Now say B is a possibly non-commutative Q-algebra, finite-dimensional of
dimension N over Q, and BA := B ⊗Q AQ.

(note that if B is an algebra over a number field K then BA is also B ⊗K AK .)

Then as an additive topological abelian group, BA ≡ AN
Q.

So if u ∈ B×, δBA(u) =
∏

v δBv (u) (a product over the places of Q) with
Bv = B ⊗Q Qv .

And this is
∏

v δQv (det(u)), where det(u) ∈ Q× is the determinant of left
muliplication by u regarded as a Q-linear automorphism of B = QN .

And this is 1 by the product formula.

I’ll end by noting that if B is furthermore a central simple algebra, then right
multiplication by an element u ∈ B×A on BA scales Haar measure by δBA(u),
because the factor is a product of local terms, and we already saw that left and
right multiplication change Haar measure locally in the same way.

13



Final
Formalizing

Fermat lecture

Kevin Buzzard

Introduction

Haar
characters

Quaternionic
modular forms

Hecke
operators

Part 2: Quaternionic modular forms.
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Quaternionic modular forms

Reminder of the definition of the spaces we’re interested in (for simplicity let’s
stick to weight 2):

F a totally real number field (e.g. Q or Q(
√

2)).

D/F a totally definite quaternion algebra (e.g. F ⊕ Fi ⊕ Fj ⊕ Fk ).

A∞F the finite adeles of F , a huge (but locally compact) topological commutative
ring containing a copy of F (it’s F ⊗Z Ẑ).

The ring Df := D ⊗F A∞F is then a locally compact topological ring (finite and
free of rank 4 over A∞F as a module, with product topology).

The ring Df is an F -algebra containing a copy of D.

Its units D×f are thus a locally compact topological group containing D×.
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Quaternionic modular forms

We have this huge locally compact topological group D×f , containing a copy of
D×.

Let U be a “level” (that is, a compact open subgroup of D×f ).

A weight 2 modular form of level U is a function f : D×f → C satisfying two
axioms:

(1) f (dg) = f (g) for d ∈ D×; (weight 2)

(2) f (gu) = f (g) for u ∈ U. (level U)

Note that (2) implies that f is locally constant and in particular continuous.

Weight 2 modular forms of level U are a complex vector space (addition and
scalar multiplication defined via action on the target C).
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Quaternionic modular form

U ⊂ D×f compact open; weight 2 modular forms of level U is
S2(U) := {f : D×\D×f /U → C}.

Theorem
S2(U) is a finite-dimensional complex vector space.

Equivalently, D×\D×f /U is a finite set.

Equivalently, D×\D×f is compact.
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Last time
Last time I sketched why the quotient D\(D ⊗F AF ) was compact.

The proof: D is finite-dimensional over F and thus finite-dimensional over Q
(say N-dimensional), and one checks using AF = AQ ⊗Q F that this space is
just (Q\AQ)

N .

One proves that Q\AQ is compact via an explicit calculation: the natural map
from Ẑ× [0,1] to this space is continuous and surjective so done.

But you can’t just now "take the units".

For example R/Z is compact but R×/Z× is not.

Similarly here, D×\(D ⊗F AF )
× is also not compact if you use the full ring of

adeles AF , because if [F : Q] = n then although the integers of F have Z-rank
n, the global units of F only have rank n − 1 (so compactness is not even true
for D = F , let alone if D is a quaternion algebra).

The actual argument is rather more delicate, and I’ll sketch it now.
18



Final
Formalizing

Fermat lecture

Kevin Buzzard

Introduction

Haar
characters

Quaternionic
modular forms

Hecke
operators

The theorem we’ll prove

Let K be a number field (for example a totally real field).

Let B be is a finite-dimensional division algebra over K (for example a totally
definite quaternion algebra) (note that division algebras are central simple
algebras.)

Let BA denote B ⊗K AK , a locally compact topological ring.

Let δ : B×A → R>0 be the Haar character, and let B(1)
A denote the kernel of δ (so

B× ⊂ B(1)
A by the product formula).

Theorem
The quotient B×\B(1)

A is compact.
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Application

Note: this theorem implies finite-dimensionality of the space of quaternionic
modular forms over a totally real field.

Indeed take K = F , B = D. Theorem says D×\D(1)
A is compact. Want

D×\(Df
A)
× compact.

So it suffices to prove that the natural continuous map from D(1)
A to D×f (“forget

the infinite places”) is a surjection (as cts image of compact is compact).

Just to orient you: D(1)
A has stuff at infinite places, but some product must be 1;

D×f has just stuff at finite places, but no condition on some character being 1.

20



Final
Formalizing

Fermat lecture

Kevin Buzzard

Introduction

Haar
characters

Quaternionic
modular forms

Hecke
operators

Natural map is surjective

Need that the map D(1)
A → D×f is surjective.

In other words, given a random element of D×f , whose Haar character will be a
random positive real number, we need to find an element of D∞ := D ⊗Q R
whose Haar character is the inverse of this.

But one checks easily that if D∞ has dimension N over R and u ∈ R× then
δD∞(u) = |u|N (because this is δR(det(u)) with u now regarded as an N × N
scalar matrix) and this takes all positive real values.
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The story so far

So far we’ve seen that to prove that the space of quaternionic modular forms is
finite-dimensional, it suffices to prove the following:

If K is a number field, B/K is a finite-dimensional division algebra, and B(1)
A

denotes the kernel of the Haar character on the units of BA := B ⊗K AK , then
(a) B× ⊂ B(1)

A and (b) it suffices to prove that B×\B(1)
A is compact.

Remark: This (1) business drops a factor of R>0 and this is exactly how we get
from degree n totally real fields to their units having rank n − 1.

Remark: if B = K then this theorem is equivalent to the claims that the class
group of K is finite, and the unit group has rank r + s − 1.
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Proof of the theorem

Notation: B our division algebra over number field K , Bf = B ⊗K A∞K ,
BA = B ⊗K AK .
Step 1. There’s a compact subset E of BA with the property that for all
x ∈ B(1)

A , the obvious map xE → B\BA is not injective.

Proof.
We know that B\BA = (Q\AQ)

N is compact, and that B is discrete in BA (from
last time).

Fix a Haar measure µ on BA and push it forward to B\BA; this quotient has
finite and positive measure, say m ∈ R>0.

Choose any compact E ⊆ BA with measure > m.

Then µ(xE) = µ(E) > m so the map can’t be injective.
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Big sets

Remark: how we do know that there exists E ⊆ BA with measure > m?

For example, we could choose a random lattice Z-lattice L in B, start with the
compact L⊗Z Ẑ×X where X is some closed ball in B ⊗Q R ∼= RN (its interior is
nonempty so the measure is positive), and then just take disjoint additive
translates until the measure is big enough.
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Step 2.

We have this compact E with big measure, in a topological ring, and now set
X = E − E = {e − f : e, f ∈ E} and Y = X ∗ X = {x ∗ y : x , y ∈ X}.

Then X and Y are also compact subsets of BA as they’re continuous images of
compact sets.

Step 3. We claim that if β ∈ B(1)
A then βX ∩ B× 6= ∅.

Indeed by Step 1, the map βE → B\BA isn’t injective, so there are distinct
βe1, βe2 ∈ βE with βe1 − βe2 = b ∈ B.

And b 6= 0 and B is a division algebra, so b ∈ B×.

And e1 − e2 ∈ X so b = β(e1 − e2) ∈ βX , so done.
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Step 4 Similarly, if β ∈ B(1)
A then I claim Xβ−1 ∩ B× 6= ∅.

Indeed, β−1 ∈ B(1)
A , and so left multiplication by β−1 doesn’t change Haar

measure on BA, so neither does right multiplication (as they change Haar
measure by the same amount, as B is a form of a matrix algebra).

So the same argument works: Eβ−1 → B\BA is not injective so choose
e1β

−1 6= e2β
−1 with difference b ∈ B and then (e1 − e2)β

−1 ∈ B×.
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Step 5 Recall Y = X ∗ X ⊂ BA is compact. I claim that Y ∩ B× is finite.

Proof.
It suffices to prove that Y ∩ B is finite.

But B ⊆ BA is a discrete additive subgroup, and hence closed.

And Y ⊆ BA is compact.

So B ∩ Y is compact and discrete, so finite.
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Now let T = Y ∩ B× be this finite subset of BA, and define
K := (T−1 ∗ X )× X ⊂ BA × BA, noting that K is compact because X is
compact and T is finite.

Step 6 For every β ∈ B(1)
A , there exists b ∈ B× and ν ∈ B(1)

A such that β = bν
and (ν, ν−1) ∈ K .

Before we prove this, let’s show that it implies what we want, namely that
B×\B(1)

A is compact.

Indeed, if M is the preimage of K under the map B(1)
A → BA × BA sending ν to

(ν, ν−1), then M is a closed subspace (assuming δBA is continuous!) of a
compact space so it’s compact, and step 6 shows that M surjects onto B×\B(1)

A
which is thus also compact.
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End of the proof

It suffices then to show that for every β ∈ B(1)
A , there exists b ∈ B× and ν ∈ B(1)

A
such that β = bν and (ν, ν−1) ∈ K .

By step 3, βX ∩ B× 6= ∅, and by step 4, Xβ−1 ∩ B× 6= ∅, so we can write
βx1 = b1 and x2β

−1 = b2 with obvious notation.

Multiplying, x2x1 = b2b1 ∈ Y ∩ B× = T (recall that Y = X ∗ X and T = Y ∩ B×

is finite); call this element t . Note that T ⊂ B× so t is a unit, and thus x1, x2 are
units (a left or right divisor of a unit is a unit; this is a general fact about
subrings of matrix rings and may be true more generally).

Then x−1
1 = t−1x2 ∈ T−1 ∗ X , and x1 ∈ X , so if we set ν = x−1

1 and b = b1 then
we have β = bν and (ν, ν−1) ∈ K := (T−1 ∗ X )× X .

Done!
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Remark

Note that this last part of the argument was certainly long, but it was not
technical, it was just inelegant.

If we can get this done before the analysts figure out how to integrate around
wacky contours in the upper half plane, then we’ve proved finite-dimensionality
of quaternionic modular forms before they’ve proved finite-dimensionality of
classical modular forms :-)
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Part 3 (all downhill from here): Hecke algebras acting on spaces of
quaternionic modular forms.
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Abstract set-up

Say we have some abelian group A of “forms”, and a group (or a monoid) G
acting on the left on this abelian group.

If U is a subgroup of G, then we define the U-invariant forms AU to be the
a ∈ A such that u • a = a for all u ∈ U.

Now say V is another subgroup of G, say g ∈ G, and assume that the double
coset VgU is a finite union of single cosets

∐n
i=1 giU.

Under this finiteness hypothesis, there’s a Hecke operator [VgU] : AU → AV

defined by sending a ∈ AU to
∑

i(gi • a).

I claim that this is a well-defined abelian group homomorphism.
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Hecke operators

G acts on A, U,V ⊆ G, g ∈ G, VgU =
∐n

i=1 giU.

[VgU] : AU → AV defined by a 7→
∑n

i=1(gia).

Clearly this map from AU to A is independent of the choice of gi in the coset
giU, as giu • a = gi • a.

Clearly an additive group homomorphism.

Suffices to prove that the image is in AV .

And if v ∈ V then vgiU is another left coset of U in VgU so it’s gi ′U, with i 7→ i ′

a permutation of {1,2,3, . . . ,n} (depending on v ) (it’s a permutation because
left multiplication by v−1 undoes it).

Hence v • [VgU]a = [VgU]a (it rearranges the sum) and we’re done.
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Extra bells and whistles

Extra actions: if R is some random ring acting on A and making A into an
R-module (for example R = C and A is a complex vector space) and the
G-action on A is R-linear, then AU is also an R-module, and [VgU] is R-linear.

If U = V then [UgU] : AU → AU is an additive endomorphism of AU , and we
call it the Hecke operator Tg .

Note: for all this to make sense we need the finiteness hypothesis that
VgU =

∐n
i=1 giU is a finite union of left cosets.
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Concrete application

Let A be the locally constant C-valued functions D×\D×f .

Let G be D×f .

Define (g • f )(x) = f (xg).

Who knows the way to check that this is a valid left action without doing any
calculations?

Temporarily write maps on the right, (x)(g • f ) = (xg)f .

Then the axiom just involves shuffling brackets around and changing •s to ∗s
and back.
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Concrete application

If U is a compact open subgroup of D×f then AU is the weight 2 modular forms
of level U.

If g ∈ D×f , why is UgU a finite union of giU?

Because UgU is compact, and the cover by left cosets giU is an cover by
disjoint opens.

And those are the Hecke operators we’ll be using.
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Concrete Hecke operators

In fact all we’ll need is the following special case.

F totally real, D/F totally definite quaternion algebra, and assume
Dv := D ⊗F Fv ∼= M2(Fv ) for all finite places v of F .

Remark: earlier in these slides v was the variable for “arbitrary place of Q”;
now it’s the variable for “arbitrary finite place of F ”.

Fix an OF -stable Z-lattice L in the Q-vector space D (an “order”).

Fix isomorphisms D ⊗F Fv = M2(Fv ) ensuring that for all but finitely many v we
have L⊗OF OFv = M2(OFv ).
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Concrete Hecke operators

Let U =
∏

v Uv is a product of compact open subgroups of D×v = GL2(Fv ) as v
runs through the finite places of F , and assume Uv = GL2(Ov ) for all v /∈ S
some finite set.

For those finite v /∈ S, set gv =

(
$ 0
0 1

)
.

Let Tv be [Ugv U].

Let T denote the subalgebra of EndC(S2(U)) generated by the Tv for v 6∈ S.
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Commutativity

Claim: T is commutative.

Proof: it suffices to show that if v 6= w then Tv Tw = TwTv .

But Tv f =
∑

i gv ,i • f , and it’s not hard to check that the gv ,i can be chosen to all
have support in GL2(Fv ).

Hence gv ,i commutes with gw ,j and this is all we need.

QED.
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Summary/what’s next
These pdf notes explain how to construct the Hecke algebra T which we’ll plug
into the abstract R = T theorem.

I think we have a path to a sorry-free proof of finite-dimensionality.

Finite-dimensionality of the spaces of forms can be used to show that T is
Noetherian.

It will also then be easy to state an extremely profound theorem of
Carayol/Langlands/Deligne/Taylor attaching Galois representations to
quaternionic forms which are eigenforms for the Hecke operators.

This theorem was proved in the 1980s so we can assume it for now.

Which is good because the proof involves analysing p-adic etale cohomology
of Shimura curves and surfaces parametrising families of abelian varieties with
PEL structure, and the reduction theory of these varieties at bad places.
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R → T

The Deligne/Langlands/Carayol/Taylor theorem attaches a Galois
representation to a character of T.

This can then be massaged into the definition of the ring homomorphism
R → T, as R is a univeral deformation ring.

Andrew’s work can then hopefully be used to show that it’s an isomorphism
(modulo nilpotents) (assuming lots of class field theory).

And then we profit.

Sorry this course was so disorganized; I took on far too much this term.

Let’s go write some Lean code. Thanks for coming.

41


	Introduction
	Haar characters
	Quaternionic modular forms
	Hecke operators

