Towards a formal proof of the Freyd-Mitchell embedding theorem

Markus Himmel
(joint with Jakob von Raumer and Paul Reichert)

July 25, 2024






The embedding theorem

Theorem (Freyd-Mitchell 1964)

Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.



The embedding theorem

Theorem (Freyd-Mitchell 1964)

Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

» “Diagram chases over modules are valid in all abelian categories”

» Can even define morphisms this way!



Is this useful? (1)

Peter Johnstone (1977):

Incidentally, the Freyd-Mitchell embedding theorem is frequently regarded as a
culmination rather than a starting-point; this is because of what seems to me
a misinterpretation (or at least an inversion) of its true significance.

[...] | believe its true import is “If you want to prove something about categories
of modules, you might as well work in a general abelian category"—for the
embedding theorem ensures that your result will be true in this generality, and
by forgetting the explicit structure of module categories you will be forced to
concentrate on the essential aspects of the problem.



Is this useful? (1)

Peter Johnstone (1977):

Incidentally, the Freyd-Mitchell embedding theorem is frequently regarded as a
culmination rather than a starting-point; this is because of what seems to me
a misinterpretation (or at least an inversion) of its true significance.

[...] | believe its true import is “If you want to prove something about categories
of modules, you might as well work in a general abelian category"—for the
embedding theorem ensures that your result will be true in this generality, and
by forgetting the explicit structure of module categories you will be forced to
concentrate on the essential aspects of the problem.

Formalization experience:

It might not be strictly necessary, but it's certainly useful!



What mathlib has today

» Problem: the embedding theorem is a lot of work to prove!



What mathlib has today

» Problem: the embedding theorem is a lot of work to prove!
» Pseudoelements (Mac Lane 1971, Borceux 1994, mathlib: 2020)

» Associate to an object X a set of pseudoelements, which are equivalence classes of
morphisms ¢ — X.

» X — Y induces PseudoElem(X) — PseudoElem(Y')

» X — Y epi iff PseudoElem(X) — PseudoElem(Y) surjective, etc.



What mathlib has today

» Problem: the embedding theorem is a lot of work to prove!
» Pseudoelements (Mac Lane 1971, Borceux 1994, mathlib: 2020)

mono_of_zero_of_map_zero _ fun ¢ hc =>
have : hc =0 :=
suffices 6 (h c) = © from zero_of_map_zero _ (pseudo_injective_of_mono _) _ this
calc
d (hc) =h" (yc) := by rw [« Pseudoelement.comp_apply, — comms;, Pseudoelement.comp_apply]
=h'" 0 := by rw [hc]
_ =0 := apply_zero _
Exists.elim ((pseudo_exact_of_exact hgh).2 _ this) fun b hb =>
have : g' (B b) =0 :=
calc
g' (B b)
_ =y c = by rw [hb]
=0 := hc

Exists.elim ((pseudo_exact_of_exact hf'g').2 _ this) fun a' ha' =>

y (g b) := by rw [« Pseudoelement.comp_apply, comm,, Pseudoelement.comp_apply]

Exists.elim (pseudo_surjective_of_epi a a') fun a ha =>
have : fa=b :=
suffices B (f a) = B b from pseudo_injective_of_mono _ this

calc



What mathlib has today

» Problem: the embedding theorem is a lot of work to prove!
» Pseudoelements (Mac Lane 1971, Borceux 1994, mathlib: 2020)
» Refinements (Bergman 1974, mathlib: Riou 2023)



What mathlib has today

» Problem: the embedding theorem is a lot of work to prove!
» Pseudoelements (Mac Lane 1971, Borceux 1994, mathlib: 2020)
» Refinements (Bergman 1974, mathlib: Riou 2023)
apply mono_of_cancel_zero
intro A f, hi
have h, : f, » Ri.map' 2 3 = 0 = hy
rw [« cancel_mono (app' ¢ 3 _), assoc, NatTrans.naturality, reassoc_of% hi,
zero_comp, zero_comp]
obtain (A:, mi, _, f1, hfi) := (hR:'.exact 0).exact_up_to_refinements f. h:
dsimp at hf,
have h; @ (f1 » app' @ 1) » R.map' 1 2 = 0 := by
rw [assoc, — NatTrans.naturality, ~ reassoc_of% hf., hi, comp_zero]
obtain (A., T2, _, do, hge) i= (hR:.exact 0).exact_up_to_refinements _ hs;
obtain (Az, ms, _, fo, hfe) := surjective_up_to_refinements_of_epi (app' ©® 0 _) goe
have hy : fe » Ri.map' 0 1 = ms » M, » f1 = by
rw [« cancel_mono (app' @ 1 _), assoc, assoc, assoc, NatTrans.naturality,
~ reassoc_of% hfs, hge]



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

Suppose we have chosen an object P of C.



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

Suppose we have chosen an object P of C. Set R := Hom(P, P).



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

Suppose we have chosen an object P of C. Set R := Hom(P, P). Get
Y(P) : C — Modg
X — Hom(P, X)
This is

> always left exact,



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

Suppose we have chosen an object P of C. Set R := Hom(P, P). Get

Y(P) : C — Modg
X — Hom(P, X)
This is
> always left exact,

> right exact iff P is projective,



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

Suppose we have chosen an object P of C. Set R := Hom(P, P). Get

Y(P) : C — Modg
X — Hom(P, X)
This is
> always left exact,

> right exact iff P is projective,
» faithful iff P is a generator,



How to prove the embedding theorem (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

Suppose we have chosen an object P of C. Set R := Hom(P, P). Get

Y(P): C — Modg
X — Hom(P, X)
This is
> always left exact,
> right exact iff P is projective,
» faithful iff P is a generator,
» full as long as all of the above hold and C is cocomplete.

Not every small abelian category is cocomplete and has a projective generator!



How to prove the embedding theorem (2)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.



How to prove the embedding theorem (2)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

» Know how to do it if C is cocomplete and has a projective generator, what about
the general case?



How to prove the embedding theorem (2)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

» Know how to do it if C is cocomplete and has a projective generator, what about
the general case?

> |dea: embed C into a category that has these properties.



How to prove the embedding theorem (2)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modg.

» Know how to do it if C is cocomplete and has a projective generator, what about
the general case?

> |dea: embed C into a category that has these properties.

» Freyd uses Y : C — Lex(C°P, Ab).

» Kashiwara-Schapira (and we) use Y : C — Pro(C) = Ind(C°P)°P = Lex(C°P, Ab).

>

Pro(C) works because it is a co-Grothendieck category.



How to prove the embedding theorem (3)

Rough list of things to do to prove the theorem:

>

vVvYvyyvyy

Define Grothendieck categories (easy enough)

Show that Grothendieck categories are complete (SAFT, done)

Show that Grothendieck categories have an injective cogenerator (hard)
Define Pro(C) and prove basic properties (hard, very long, working on it)
Show that Pro(C) is a co-Grothendieck category (hopefully doable)

Prove various properties of the two embeddings C — Pro(C) — Modg (easy but
somewhat long, mostly done)

Other proofs are possible.



Working on top of mathlib

» The proof is very very long

» We work on this in our free time on weekends

» Project started in February 2022, will realistically take several more years
» How to combat “quadratic bitrot™?



Working on top of mathlib

vVvYyyvyy

vy

The proof is very very long

We work on this in our free time on weekends

Project started in February 2022, will realistically take several more years
How to combat “quadratic bitrot"?

Solution: use a proof that develops a lot of general theory and PR everything to
mathlib immediately

138 PRs merged so far (97 to mathlib3, 61 to mathlib4)

Amount of unmerged code: < 300 lines
Additional benefits:

» Do things right from the start, no accumulating piles of hacks (but cannot take any
shortcuts)
» Partial progress is useful to other people



Size issues (1)

Theorem
Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modk.



Size issues (1)

Theorem

Let C be a small abelian category. Then there is a (not necessarily commutative) ring R
and a full, faithful and exact functor C — Modk.

Every category is small if you look at it from far enough away. ..



Size issues (2)

Theorem (Yoneda 1954)

Let C be a category, let F : C — Set be a functor and let X be an object of C. Then
there is a bijection between the natural transformations Hom(X, —) — F and FX.



Is this useful? (2)

Advantage when defining data is much less clear.



