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@ TLS (Testing lower bounds) project, led by Rémy Degenne.
@ Information theory studies how to quantify information.
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https://github.com/RemyDegenne/testing-lower-bounds

@ TLS (Testing lower bounds) project, led by Rémy Degenne.
@ Information theory studies how to quantify information.

e Information divergences: given i, v two probability distributions,
D(p,v) measures how easy it is to tell them apart.
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https://github.com/RemyDegenne/testing-lower-bounds

Overview

@ TLS (Testing lower bounds) project, led by Rémy Degenne.
@ Information theory studies how to quantify information.

@ Information divergences: given i, v two probability distributions,
D(p,v) measures how easy it is to tell them apart.

e Data processing inequality (DPI): if we process the data produced by
w and v, we cannot make them easier to distinguish.

D(kop,kov) < D(u,v)
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Q Transition kernels

@ Information divergences

© Data Processing Inequality (DPI)
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Let X', ) be measurable spaces, with their respective o-algebras .Zx, . Zy,
also let M(X) be the set of measures on X.
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Let X', ) be measurable spaces, with their respective o-algebras .Zx, . Zy,
also let M(X) be the set of measures on X.

A kernel from X to ) is a function

K X X yy — F+
such that:
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Let X', ) be measurable spaces, with their respective o-algebras .Zx, . Zy,
also let M(X) be the set of measures on X.

A kernel from X to ) is a function

K X X ﬂy — F+
such that:

e for every x € X the function x(x,-) is a measure on ),
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Definition of kernel

Let X', ) be measurable spaces, with their respective o-algebras Zx, Zy,
also let M(X') be the set of measures on X.

Definition (Transition kernel)
A kernel from X to ) is a function

k: X X Fy — Ry

such that:
e for every x € X' the function x(x,-) is a measure on ),

o for every B € .%y the function x — k(x, B) is measurable.
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Definition of kernel
Let X', ) be measurable spaces, with their respective o-algebras Zx, Zy,
also let M(X') be the set of measures on X.
Definition (Transition kernel)
A kernel from X to ) is a function
k: X X Fy — Ry

such that:
e for every x € X' the function x(x,-) is a measure on ),

o for every B € .%y the function x — k(x, B) is measurable.
We write k: X ~> V.
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Definition of kernel
Let X', ) be measurable spaces, with their respective o-algebras Zx, Zy,
also let M(X') be the set of measures on X.

Definition (Transition kernel)
A kernel from X to ) is a function
k: X X Fy — Ry

such that:
e for every x € X' the function x(x,-) is a measure on ),
o for every B € .%y the function x — k(x, B) is measurable.

We write k: X ~> V.
If k(x,-) is a probability measure for all x, we say that « is a Markov kernel.

A kernel X ~~ Y can also be seen as a measurable function X — M(Y).
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structure Kernel (a (3 : Type*)

[MeasurableSpace a] [MeasurableSpace (] where
toFun : @ — Measure 3

measurable’ : Measurable toFun
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Lean implementation

structure Kernel (a (3 : Type*)

[MeasurableSpace a] [MeasurableSpace (] where
toFun : @ — Measure (8

measurable’ : Measurable toFun

The measurable structure on Measure 3 is the canonical one given by the

projection maps u +— p(s) for s C 8 measurable, and is automatically
inferred by Lean.

instance instMeasurableSpace : MeasurableSpace (Measure ) :=
L (s : Set ) (_ : MeasurableSet s),
(borel R>000).comap fun p => u s
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Kernels are a way of representing the idea of a transformation that involves
some randomness, in other words, a stochastic function.
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Kernels are a generalization of:
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Kernels are a way of representing the idea of a transformation that involves
some randomness, in other words, a stochastic function
Kernels are a generalization of:

@ measures: x — (4 is a constant kernel
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What are kernels?

Kernels are a way of representing the idea of a transformation that involves
some randomness, in other words, a stochastic function.

Kernels are a generalization of:
@ measures: x — (4 is a constant kernel

@ measurable functions: x + d¢(y) is a deterministic kernel
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Let kK: X ~» Y and p € M(X). We can combine x and x in various ways.
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Let kK: X ~» Y and p € M(X). We can combine x and x in various ways.
e Composition: kopu € M(Y). Alsonor: X~ Zforn: Y~ Z.
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Let kK: X ~» Y and p € M(X). We can combine x and x in various ways.

e Composition: kopu € M(Y). Alsonor: X~ Zforn: Y~ Z.
@ Posterior kernel (or Bayesian inverse): IiLI Y~ X
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Kernel operations

Let K: X ~» Y and u € M(X). We can combine x and p in various ways.
e Composition: kopu € M(Y). Alsonor: X~ Zforn: Y~ Z.
@ Posterior kernel (or Bayesian inverse): /ﬁJL: Y X
> HL is not guaranteed to exist. Some sufficient hypotheses are: k, i

finite, X’ standard Borel space (complete, separable metric space with
Borel o-algebra).
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Kernel operations

Let K: X ~» Y and u € M(X). We can combine x and p in various ways.
e Composition: kopu € M(Y). Alsonor: X~ Zforn: Y~ Z.
@ Posterior kernel (or Bayesian inverse): /ﬁJL: Y X
> HL is not guaranteed to exist. Some sufficient hypotheses are: k, i
finite, X’ standard Borel space (complete, separable metric space with
Borel o-algebra).
e Composition product: k@ u € M(X x V). Also k@n: X ~» )Y x Z
forn: X x Y ~ Z.
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Kernel operations

Let K: X ~» Y and u € M(X). We can combine x and p in various ways.
e Composition: kopu € M(Y). Alsonor: X~ Zforn: Y~ Z.
Posterior kernel (or Bayesian inverse): /ﬁJL: Vs X
> HL is not guaranteed to exist. Some sufficient hypotheses are: k, i

finite, X’ standard Borel space (complete, separable metric space with
Borel o-algebra).

Composition product: k@ u € M(X xY). Also k@n: X ~ )Y X Z
forn: X x Y ~ Z.

Product: k xn: X ~» Y x Zforn: X ~ Z.

Parallel product: k|| n: X x Z~ Y x W forn: Z ~W.
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Kernel operations

Let K: X ~» Y and u € M(X). We can combine x and p in various ways

e Composition: ko € M(Y). Alsonok: X ~ Z forn: Y ~ Z.
@ Posterior kernel (or Bayesian inverse): /ﬁJL: Vs X
o

» ! is not guaranteed to exist. Some sufficient hypotheses are: ., 1
finite, X’ standard Borel space (complete, separable metric space with
Borel o-algebra).

e Composition product: k@ u € M(X x V). Also k@n: X ~» )Y x Z
forn: X x Y ~ Z.

@ Product: k xn: X ~» Y x Zforn: X ~ Z.
e Parallel product: || n: X X Z ~» Y x W for n: Z ~» W.
Remark (Lean notation)

e Composition : k o, u, n ok K

e Comp. prod. : jt ®m Kk, K @k 7

@ Parallel product : & ||« 7
@ Product : k x,

@ Posterior kernel
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@ A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D: M(X) x M(X) =R
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@ A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D: M(X)x M(X) =R
@ Not necessarily a metric, can be asymmetric.
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Information divergence

@ A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D: M(X)x M(X) =R

@ Not necessarily a metric, can be asymmetric.

@ Some properties that a good divergence should verify, at least for
probability measures p, v:
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@ A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D: M(X)x M(X) =R

@ Not necessarily a metric, can be asymmetric.

@ Some properties that a good divergence should verify, at least for
probability measures p, v:
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Information divergence

@ A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D: M(X)x M(X) =R

@ Not necessarily a metric, can be asymmetric.

@ Some properties that a good divergence should verify, at least for
probability measures p, v:

» D(p,p) =0.
» Non-negativity: D(u,v) > 0.
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Information divergence

@ A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D: M(X)x M(X) =R

@ Not necessarily a metric, can be asymmetric.
@ Some properties that a good divergence should verify, at least for
probability measures p, v:
» D(p,p) =0.
» Non-negativity: D(u,v) > 0.
» Data processing inequality: D(k o u, kov) < D(u,v) for every Markov
kernel «.
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Let X be a measurable space, 1, v € M(X) and f: Ry — R a convex
as

function such that f(1) = 0. The f-divergence between i and v is defined

D (p,v) ZZ/X'C(%

du) dv + f'(o0)p1,(X).
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Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, u,v € M(X) and f: Ry — R a convex

function such that f(1) = 0. The f-divergence between 1 and v is defined
as

De(p,v) = /X f (Zﬁ) dv + f'(00) 1y (X).

Reminder: Lebesgue decomposition

If we have two (sigma finite) measures p, v € M(X'), we can decompose 1
into two parts, respectively absolutely continuous and singular w.r.t. v:

du
M:T'V+ﬂlu~
v
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Definition of f-divergence

Definition (f-divergence) |

Let X be a measurable space, u,v € M(X) and f: Ry — R a convex
function such that f(1) = 0. The f-divergence between 1 and v is defined
as

De(p,v) = /X f (Zﬁ) dv + f'(00) 1y (X).

Reminder: Lebesgue decomposition |

If we have two (sigma finite) measures p, v € M(X'), we can decompose 1
into two parts, respectively absolutely continuous and singular w.r.t. v:
du

MZE'V"F,U‘JJ»

I and 11, are known respectively as the Radon-Nikodym derivative of

and the singular part of p with respect to v.

}
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Definition of f-divergence

Definition (f-divergence) |

Let X be a measurable space, u,v € M(X) and f: Ry — R a convex
function such that f(1) = 0. The f-divergence between 1 and v is defined
as

De(p,v) = /X f (Zﬁ) dv + f'(00) 1y (X).

Remark |
If 1 is absolutely continuous with respect to v (u < v), then the definition

simplifies to
du
D = [ f{— ) dv.
u) = [ () av



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, u,v € M(X) and f: Ry — R a convex

function such that f(1) = 0. The f-divergence between 1 and v is defined
as

De(p,v) = /X f (Zﬁ) dv + f'(00) 1y (X).

The class of f-divergences is very broad, and includes many well-known
divergences.

o Kullback-Leibler divergence, with f(x) = x log x.

o Total variation, with f(x) = 3|x — 1].

o x2-divergence, with f(x) = (x — 1)2.

o Hellinger a-divergence, with f,(x) = =L and o € (0, 400)\ {1}.



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, u,v € M(X) and f: R, — R a convex
function such that f(1) = 0. The f-divergence between p and v is defined

) Df(p,v) = /X f (%) dv + f'(00) 1, (X).

v

def fDiv (f : R — R) (u v : Measure «) : EReal :=

if — Integrable (fun x — f ((Op/0v) x).toReal) v then oo
else f x, £ ((Op/0v) x).toReal v

+ derivAtTop f * u.singularPart v univ




def fDiv (f : R — R) (u v : Measure ) : EReal :=
if — Integrable (fun x — £ ((Ou/dv) x).toReal) v then co
else [ x, £ ((Op/dv) x).toReal dv

+ derivAtTop f * p.singularPart v univ
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Refactor (ongoing)

def fDiv (f : R — R) (p v : Measure «) : EReal :=

if — Integrable (fun x — £ ((Op/0v) x).toReal) v then co
else [ x, £ ((Op/dv) x).toReal dv

+ derivAtTop f * u.singularPart v univ

Some issues with this definition:
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Refactor (ongoing)

def fDiv (f : R — R) (p v : Measure «) : EReal :=
if — Integrable (fun x — f ((Op/Jv) x).toReal) v then oo
else [ x, £ ((Op/dv) x).toReal dv

+ derivAtTop f * u.singularPart v univ

Some issues with this definition:

@ Domain of f: R instead of R>0cc (ENNReal), forces us to use .toReal
Derivatives and convexity in Mathlib work better with real functions.
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Refactor (ongoing)

def fDiv (f : R — R) (p v : Measure «) : EReal :=
if — Integrable (fun x — f ((Op/Jv) x).toReal) v then oo
else [ x, £ ((Op/dv) x).toReal dv

+ derivAtTop f * u.singularPart v univ

Some issues with this definition:

@ Domain of f: R instead of R>0cc (ENNReal), forces us to use .toReal

Derivatives and convexity in Mathlib work better with real functions.
e Codomain of f: we would like to allow infinite values.
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Refactor (ongoing)

def fDiv (f : R — R) (p v : Measure «) : EReal :=
if — Integrable (fun x — f ((Op/Jv) x).toReal) v then oo
else [ x, £ ((Op/dv) x).toReal dv

+ derivAtTop f * u.singularPart v univ

Some issues with this definition:

@ Domain of f: R instead of R>0cc (ENNReal), forces us to use .toReal

Derivatives and convexity in Mathlib work better with real functions.
e Codomain of f: we would like to allow infinite values.

@ Bochner integral: forces us to use an if statement, cumbersome to use.
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Refactor (ongoing)

def fDiv (f : R — R) (p v : Measure «) : EReal :=
if — Integrable (fun x — f ((Op/Jv) x).toReal) v then oo
else [ x, £ ((Op/dv) x).toReal dv

+ derivAtTop f * u.singularPart v univ

Some issues with this definition:

@ Domain of f: R instead of R>0c0 (ENNReal), forces us to use .toReal.

Derivatives and convexity in Mathlib work better with real functions.
@ Codomain of f: we would like to allow infinite values.

@ Bochner integral: forces us to use an if statement, cumbersome to use.

@ Output type: EReal. Do we really need/want to allow negative values?
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Refactor (ongoing)

def fDiv (f : R — R) (p v : Measure «) : EReal :=
if — Integrable (fun x — f ((Op/Jv) x).toReal) v then oo
else [ x, £ ((Op/dv) x).toReal dv
+ derivAtTop f * u.singularPart v univ

structure DivFunction where
toFun : R>000 — R>000
one : toFun 1 =0
convexOn' : ConvexOn IR>0 univ toFun
continuous’ : Continuous toFun

def fDiv (f : DivFunction) (u v : Measure a) : R>000 :=
™ x £ ((Op/0v) x) Ov + f.derivAtTop * p.singularPart v .univ
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Let X and ) be measurable spaces, j1,v € M(X) finite measures,
f(1) =0. Then

k: X ~» Y a Markov kernel, and f: R, — R a convex function such that

Dr(r o p, k0 v) < Dy(p,v).
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Let X and ) be measurable spaces, j1,v € M(X) finite measures,
f(1) =0. Then

k: X ~» Y a Markov kernel, and f: R, — R a convex function such that

D (ko p, k0v) < De(p,v).
e A fundamental result in information theory.
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Data Processing Inequality for f-divergences

Theorem (Data Processing Inequality)

Let X and ) be measurable spaces, ji,v € M(X) finite measures,
k: X ~~ Y a Markov kernel, and f: EJF — R a convex function such that
f(1) =0. Then

De(r o i, ko v) < Dr(ji,v).

e A fundamental result in information theory.

@ The amount of information cannot be increased by processing data
through a (potentially random) transformation.
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Data Processing Inequality for f-divergences

Theorem (Data Processing Inequality)

Let X and ) be measurable spaces, j1,v € M(X) finite measures,

k: X ~ )Y a Markov kernel, and f: Ry — R a convex function such that
f(1) =0. Then

Df(xo k0 v) < De(y,v).

e A fundamental result in information theory.

@ The amount of information cannot be increased by processing data
through a (potentially random) transformation.

e If we want to distinguish two distributions based on data sampled
from them, we cannot make our job easier by processing the samples.
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Data Processing Inequality for f-divergences

Theorem (Data Processing Inequality) |

Let X and ) be measurable spaces, ji,v € M(X) finite measures,
k: X ~~ Y a Markov kernel, and f: EJF — R a convex function such that
f(1) =0. Then

De(r o i, ko v) < Dr(ji,v).

e A fundamental result in information theory.

@ The amount of information cannot be increased by processing data
through a (potentially random) transformation.

e If we want to distinguish two distributions based on data sampled
from them, we cannot make our job easier by processing the samples.
@ We formalized several proofs of this result, along with many auxiliary

results, like posterior kernels, hypothesis testing, lemmas about EReal,
convex functions, rnDeriv, etc.
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@ Deterministic kernels

» Only applies if x is a deterministic kernel.
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@ Deterministic kernels

» Only applies if x is a deterministic kernel.

» Use the conditional Jensen's inequality (still sorried).

«O>» «F>» «E» «E>» Q>
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© Standard Borel spaces
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» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces

o-algebras.

» Only applies if X', are complete, separable metric spaces with Borel

«O0>» «F>» «E» «E>» Q>



@ Deterministic kernels

» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces

o-algebras.

» Only applies if X', are complete, separable metric spaces with Borel
» Use Jensen's inequality.
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Different proofs

@ Deterministic kernels
» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces
» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.
» Use Jensen's inequality.
» Use the existence of the posterior kernels «f, and x.
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Different proofs

@ Deterministic kernels

» Only applies if x is a deterministic kernel.

» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces

» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.

» Use Jensen's inequality.

» Use the existence of the posterior kernels «f, and x.

© General spaces using hypothesis testing
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Different proofs

@ Deterministic kernels
» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces
» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.
» Use Jensen's inequality.
» Use the existence of the posterior kernels «f, and x.
© General spaces using hypothesis testing

» Use a parametric family of divergences 74 .y (statistical information)
that naturally emerges from the hypothesis testing framework.
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Different proofs

@ Deterministic kernels

» Only applies if x is a deterministic kernel.

» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces

» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.

» Use Jensen's inequality.

» Use the existence of the posterior kernels «f, and x.

© General spaces using hypothesis testing

» Use a parametric family of divergences 74 .y (statistical information)
that naturally emerges from the hypothesis testing framework.
> Z(3,) naturally satisfies the DPI.
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Different proofs

@ Deterministic kernels
» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).

© Standard Borel spaces
» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.
» Use Jensen's inequality.
» Use the existence of the posterior kernels «f, and x.
© General spaces using hypothesis testing
» Use a parametric family of divergences 74 .y (statistical information)
that naturally emerges from the hypothesis testing framework.
> Z(3,) naturally satisfies the DPI.
» Use a representation of f-divergences in terms of an integral of Z(; )
(this needs a generalization of the integration by parts, still sorrled)
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Different proofs

@ Deterministic kernels
» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces
» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.
» Use Jensen's inequality.
» Use the existence of the posterior kernels «f, and x.
© General spaces using hypothesis testing
» Use a parametric family of divergences 74 .y (statistical information)
that naturally emerges from the hypothesis testing framework.
> Z(3,) naturally satisfies the DPI.
» Use a representation of f-divergences in terms of an integral of Z(; )
(this needs a generalization of the integration by parts, still sorrled)

Q General spaces
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Different proofs

@ Deterministic kernels
» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).
© Standard Borel spaces
» Only applies if X, are complete, separable metric spaces with Borel
o-algebras.
» Use Jensen's inequality.
» Use the existence of the posterior kernels «f, and x.
© General spaces using hypothesis testing
» Use a parametric family of divergences 74 .y (statistical information)
that naturally emerges from the hypothesis testing framework.
> Z(3,) naturally satisfies the DPI.
» Use a representation of f-divergences in terms of an integral of Z(; )
(this needs a generalization of the integration by parts, still sorrled)
Q General spaces
» Similar to 2.
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Different proofs

@ Deterministic kernels
» Only applies if x is a deterministic kernel.
» Use the conditional Jensen's inequality (still sorried).

© Standard Borel spaces
» Only applies if X, are complete, separable metric spaces with Borel

o-algebras.
» Use Jensen's inequality.
» Use the existence of the posterior kernels «f, and x.

© General spaces using hypothesis testing
» Use a parametric family of divergences 74 .y (statistical information)
that naturally emerges from the hypothesis testing framework.
> Z(3,) naturally satisfies the DPI.
» Use a representation of f-divergences in terms of an integral of Z(; )
(this needs a generalization of the integration by parts, still sorrled)

Q General spaces

» Similar to 2.
» Use 1 to skip part of the proof, avoiding the need for «f, and xJ.
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e Given two probability measures 1, v and a prior 7 = (3,7), an
on a data sample.

estimator is a function that tries to distinguish between y and v based
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Integral represantation of f-divergences

@ Given two probability measures p, v and a prior m = (3,7), an
estimator is a function that tries to distinguish between 1 and v based
on a data sample.

® Z(3~)(u,v) is the difference in performance between the best possible
estimator and a "blind" estimator that cannot look at the data.

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 16 /17



Integral represantation of f-divergences

@ Given two probability measures p, v and a prior m = (3,7), an
estimator is a function that tries to distinguish between 1 and v based
on a data sample.

® Z(3~)(u,v) is the difference in performance between the best possible
estimator and a "blind" estimator that cannot look at the data.
Theorem (Integral representation of f-divergences) |

Let f: R — R be a convex function such that f(1) = f{ (1) =0,
w, v € M(X) probability measures such that y < v. Then

Dy, 7) = /]R i1y (1, v) e ().

+

Where ~¢ is the curvature measure of f.
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Summary and Conclusions

Done

@ fDiv, definition and API

@ Exampes of information divergences: Kulback-Leibler, Hellinger,
Rényi, Statistical Information.

o Hypothesis testing, definitions and connection with f-divergences

@ Data Processing Inequality for f-divergences

@ Posterior kernels and other operations on kernels, results about
existing operations

@ Other results about EReal, convex functions, rnDeriv, etc.
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@ Exampes of information divergences: Kulback-Leibler, Hellinger,
Rényi, Statistical Information.

o Hypothesis testing, definitions and connection with f-divergences

@ Data Processing Inequality for f-divergences

@ Posterior kernels and other operations on kernels, results about
existing operations

@ Other results about EReal, convex functions, rnDeriv, etc.

Still To Do
o Generalized integration by parts (Riemann-Stieltjes integral)
e Conditional Jensen's inequality
@ Complete the refactor of £Div
@ Porting to Mathlib
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@ fDiv, definition and API

@ Exampes of information divergences: Kulback-Leibler, Hellinger,
Rényi, Statistical Information.

o Hypothesis testing, definitions and connection with f-divergences

@ Data Processing Inequality for f-divergences

@ Posterior kernels and other operations on kernels, results about
existing operations

@ Other results about EReal, convex functions, rnDeriv, etc.

Still To Do
o Generalized integration by parts (Riemann-Stieltjes integral)
e Conditional Jensen's inequality
@ Complete the refactor of £Div
@ Porting to Mathlib

Thank you for your attention :)
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