Information theory in Lean: the DPI

Lorenzo Luccioli

January 15, 2025

L OKODZO	L LICCIO	
LOIEIIZO		

Information Theory in Lean 4

15-01-2025

イロト イポト イヨト イヨト

うへで 1/17

E

• TLS (Testing lower bounds) project, led by Rémy Degenne.

- TLS (Testing lower bounds) project, led by Rémy Degenne.
- Information theory studies how to quantify information.

Lorenzo Luccioli	Information Theory in Lean 4	15-01-2025	2/17
			= •) ((•

- TLS (Testing lower bounds) project, led by Rémy Degenne.
- Information theory studies how to quantify information.
- Information divergences: given μ, ν two probability distributions, $D(\mu, \nu)$ measures how easy it is to tell them apart.

イロト イポト イヨト イヨト

- TLS (Testing lower bounds) project, led by Rémy Degenne.
- Information theory studies how to quantify information.
- Information divergences: given μ, ν two probability distributions, $D(\mu, \nu)$ measures how easy it is to tell them apart.
- Data processing inequality (DPI): if we process the data produced by μ and ν , we cannot make them easier to distinguish.

$$D(\kappa \circ \mu, \kappa \circ \nu) \leq D(\mu, \nu)$$

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

æ

Transition kernels

renzo Luccioli

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

1

Definition of kernel

Let \mathcal{X}, \mathcal{Y} be measurable spaces, with their respective σ -algebras $\mathscr{F}_{\mathcal{X}}, \mathscr{F}_{\mathcal{Y}}$, also let $\mathcal{M}(\mathcal{X})$ be the set of measures on \mathcal{X} .

Definition of kernel

Let \mathcal{X}, \mathcal{Y} be measurable spaces, with their respective σ -algebras $\mathscr{F}_{\mathcal{X}}, \mathscr{F}_{\mathcal{Y}}$, also let $\mathcal{M}(\mathcal{X})$ be the set of measures on \mathcal{X} .

Definition (Transition kernel)

A *kernel* from \mathcal{X} to \mathcal{Y} is a function

$$\kappa \colon \mathcal{X} \times \mathscr{F}_{\mathcal{Y}} \to \overline{\mathbb{R}}_+$$

such that:

Definition of kernel

Let \mathcal{X}, \mathcal{Y} be measurable spaces, with their respective σ -algebras $\mathscr{F}_{\mathcal{X}}, \mathscr{F}_{\mathcal{Y}}$, also let $\mathcal{M}(\mathcal{X})$ be the set of measures on \mathcal{X} .

Definition (Transition kernel)

A *kernel* from \mathcal{X} to \mathcal{Y} is a function

$$\kappa \colon \mathcal{X} \times \mathscr{F}_{\mathcal{Y}} \to \overline{\mathbb{R}}_+$$

such that:

• for every $x \in \mathcal{X}$ the function $\kappa(x, \cdot)$ is a measure on \mathcal{Y} ,

Lorenzo Luccioli	Information Theory in Lean 4	15-0	01-2025		5/17
	4			-	\$) Q (\$

Definition (Transition kernel)

A *kernel* from \mathcal{X} to \mathcal{Y} is a function

$$\kappa \colon \mathcal{X} \times \mathscr{F}_{\mathcal{Y}} \to \overline{\mathbb{R}}_+$$

such that:

- for every $x \in \mathcal{X}$ the function $\kappa(x, \cdot)$ is a measure on \mathcal{Y} ,
- for every $B \in \mathscr{F}_{\mathcal{Y}}$ the function $x \mapsto \kappa(x, B)$ is measurable.

イロト イポト イヨト イヨト

Definition (Transition kernel)

A *kernel* from \mathcal{X} to \mathcal{Y} is a function

$$\kappa \colon \mathcal{X} \times \mathscr{F}_{\mathcal{Y}} \to \overline{\mathbb{R}}_+$$

such that:

- for every $x \in \mathcal{X}$ the function $\kappa(x, \cdot)$ is a measure on \mathcal{Y} ,
- for every $B \in \mathscr{F}_{\mathcal{Y}}$ the function $x \mapsto \kappa(x, B)$ is measurable.

We write $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$.

イロト イポト イヨト イヨト 一日

Definition (Transition kernel)

A kernel from \mathcal{X} to \mathcal{Y} is a function

$$\kappa \colon \mathcal{X} \times \mathscr{F}_{\mathcal{Y}} \to \overline{\mathbb{R}}_+$$

such that:

- for every $x \in \mathcal{X}$ the function $\kappa(x, \cdot)$ is a measure on \mathcal{Y} ,
- for every $B \in \mathscr{F}_{\mathcal{Y}}$ the function $x \mapsto \kappa(x, B)$ is measurable.

We write $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$. If $\kappa(x, \cdot)$ is a probability measure for all x, we say that κ is a *Markov kernel*.

イロト イポト イヨト イヨト 二日

Definition (Transition kernel)

A kernel from \mathcal{X} to \mathcal{Y} is a function

$$\kappa \colon \mathcal{X} \times \mathscr{F}_{\mathcal{Y}} \to \overline{\mathbb{R}}_+$$

such that:

- for every $x \in \mathcal{X}$ the function $\kappa(x, \cdot)$ is a measure on \mathcal{Y} ,
- for every $B \in \mathscr{F}_{\mathcal{Y}}$ the function $x \mapsto \kappa(x, B)$ is measurable.

We write $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$. If $\kappa(x, \cdot)$ is a probability measure for all x, we say that κ is a *Markov kernel*.

A kernel $\mathcal{X} \rightsquigarrow \mathcal{Y}$ can also be seen as a measurable function $\mathcal{X} \rightarrow \mathcal{M}(\mathcal{Y})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のなべ

Lean implementation

```
structure Kernel (\alpha \beta : Type*)
       [MeasurableSpace \alpha] [MeasurableSpace \beta] where
   \texttt{toFun}: \alpha \to \texttt{Measure} \ \beta
   measurable': Measurable toFun
```

イロト イ理ト イヨト イヨト

```
\begin{array}{l} \texttt{structure Kernel} \ \left(\alpha \ \beta : \texttt{Type}^*\right) \\ & [\texttt{MeasurableSpace } \alpha] \ [\texttt{MeasurableSpace } \beta] \ \texttt{where} \\ & \texttt{toFun} : \alpha \rightarrow \texttt{Measure } \beta \\ & \texttt{measurable'} : \texttt{Measurable toFun} \end{array}
```

The measurable structure on Measure β is the canonical one given by the projection maps $\mu \mapsto \mu(s)$ for $s \subseteq \beta$ measurable, and is automatically inferred by Lean.

```
instance instMeasurableSpace : MeasurableSpace (Measure \alpha) :=

\sqcup (s : Set \alpha) (_ : MeasurableSet s),

(borel \mathbb{R} \ge 0\infty).comap fun \mu => \mu s
```

Lorenzo Luccioli

Information Theory in Lean 4

15-01-2025

イロト イボト イヨト イヨト 一日

Kernels are a generalization of:

Kernels are a generalization of:

• measures: $x \mapsto \mu$ is a *constant kernel*

イロト イポト イヨト イヨト

Kernels are a generalization of:

- measures: $x \mapsto \mu$ is a *constant kernel*
- measurable functions: $x \mapsto \delta_{f(x)}$ is a *deterministic kernel*

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

Lorenzo Luccioli	Information Theory in Lean 4		15-01-	2025		8/17
	4	4 DF P	1 E P	1 E P	-	*) 4 (*

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways. • Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

- Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Posterior kernel (or Bayesian inverse): $\kappa_{\mu}^{\dagger} : \mathcal{Y} \rightsquigarrow \mathcal{X}$.

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

- Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Posterior kernel (or Bayesian inverse): $\kappa^{\dagger}_{\mu} \colon \mathcal{Y} \rightsquigarrow \mathcal{X}$.
 - κ^{\dagger}_{μ} is not guaranteed to exist. Some sufficient hypotheses are: κ, μ finite, \mathcal{X} standard Borel space (complete, separable metric space with Borel σ -algebra).

イロト イポト イヨト イヨト 一日

15-01-2025

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

- Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Posterior kernel (or Bayesian inverse): $\kappa^{\dagger}_{\mu} \colon \mathcal{Y} \rightsquigarrow \mathcal{X}$.
 - κ^{\dagger}_{μ} is not guaranteed to exist. Some sufficient hypotheses are: κ, μ finite, \mathcal{X} standard Borel space (complete, separable metric space with Borel σ -algebra).
- Composition product: $\kappa \otimes \mu \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})$. Also $\kappa \otimes \eta : \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta : \mathcal{X} \times \mathcal{Y} \rightsquigarrow \mathcal{Z}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

- Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Posterior kernel (or Bayesian inverse): $\kappa^{\dagger}_{\mu} \colon \mathcal{Y} \rightsquigarrow \mathcal{X}$.
 - κ^{\dagger}_{μ} is not guaranteed to exist. Some sufficient hypotheses are: κ, μ finite, \mathcal{X} standard Borel space (complete, separable metric space with Borel σ -algebra).
- Composition product: $\kappa \otimes \mu \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})$. Also $\kappa \otimes \eta : \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta : \mathcal{X} \times \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Product: $\kappa \times \eta \colon \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

- Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Posterior kernel (or Bayesian inverse): $\kappa^{\dagger}_{\mu} \colon \mathcal{Y} \rightsquigarrow \mathcal{X}$.
 - κ^{\dagger}_{μ} is not guaranteed to exist. Some sufficient hypotheses are: κ, μ finite, \mathcal{X} standard Borel space (complete, separable metric space with Borel σ -algebra).
- Composition product: $\kappa \otimes \mu \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})$. Also $\kappa \otimes \eta : \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta : \mathcal{X} \times \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Product: $\kappa \times \eta \colon \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$.
- Parallel product: $\kappa \parallel \eta \colon \mathcal{X} \times \mathcal{Z} \rightsquigarrow \mathcal{Y} \times \mathcal{W}$ for $\eta \colon \mathcal{Z} \rightsquigarrow \mathcal{W}$.

Let $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $\mu \in \mathcal{M}(\mathcal{X})$. We can combine κ and μ in various ways.

- Composition: $\kappa \circ \mu \in \mathcal{M}(\mathcal{Y})$. Also $\eta \circ \kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$ for $\eta \colon \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Posterior kernel (or Bayesian inverse): $\kappa_{\mu}^{\dagger} \colon \mathcal{Y} \rightsquigarrow \mathcal{X}$.
 - κ^{\dagger}_{μ} is not guaranteed to exist. Some sufficient hypotheses are: κ, μ finite, \mathcal{X} standard Borel space (complete, separable metric space with Borel σ -algebra).
- Composition product: $\kappa \otimes \mu \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})$. Also $\kappa \otimes \eta \colon \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta \colon \mathcal{X} \times \mathcal{Y} \rightsquigarrow \mathcal{Z}$.
- Product: $\kappa \times \eta \colon \mathcal{X} \rightsquigarrow \mathcal{Y} \times \mathcal{Z}$ for $\eta \colon \mathcal{X} \rightsquigarrow \mathcal{Z}$.
- Parallel product: $\kappa \parallel \eta \colon \mathcal{X} \times \mathcal{Z} \rightsquigarrow \mathcal{Y} \times \mathcal{W}$ for $\eta \colon \mathcal{Z} \rightsquigarrow \mathcal{W}$.

Remark (Lean notation)

- Composition : $\kappa \circ_m \mu$, $\eta \circ_k \kappa$
- Comp. prod. : $\mu \otimes_m \kappa$, $\kappa \otimes_k \eta$
- Product : $\kappa \times_k \eta$

- Parallel product : $\kappa \parallel_k \eta$
- Posterior kernel : $\kappa \dagger \mu$

15-01-2025

Information divergences

Lorenzo Luccioli	Information Theory in Lean 4	15-01-2025	9/1
			≡ *) (

 $D\colon \mathcal{M}(\mathcal{X}) imes \mathcal{M}(\mathcal{X}) o \overline{\mathbb{R}}$

3

イロト 不得下 イヨト イヨト

$$D\colon \mathcal{M}(\mathcal{X}) imes \mathcal{M}(\mathcal{X}) o \overline{\mathbb{R}}$$

• Not necessarily a metric, can be asymmetric.

$${\mathcal D}\colon {\mathcal M}({\mathcal X}) imes {\mathcal M}({\mathcal X}) o \overline{\mathbb R}$$

- Not necessarily a metric, can be asymmetric.
- Some properties that a good divergence should verify, at least for probability measures μ, ν :

$$D\colon \mathcal{M}(\mathcal{X}) imes \mathcal{M}(\mathcal{X}) o \overline{\mathbb{R}}$$

- Not necessarily a metric, can be asymmetric.
- Some properties that a good divergence should verify, at least for probability measures μ, ν :

•
$$D(\mu,\mu) = 0.$$

$$D\colon \mathcal{M}(\mathcal{X}) imes \mathcal{M}(\mathcal{X}) o \overline{\mathbb{R}}$$

- Not necessarily a metric, can be asymmetric.
- Some properties that a good divergence should verify, at least for probability measures μ, ν :

•
$$D(\mu,\mu) = 0.$$

• Non-negativity: $D(\mu, \nu) \ge 0$.

$${\mathcal D}\colon {\mathcal M}({\mathcal X}) imes {\mathcal M}({\mathcal X}) o \overline{\mathbb R}$$

- Not necessarily a metric, can be asymmetric.
- Some properties that a good divergence should verify, at least for probability measures μ, ν :
 - $D(\mu,\mu) = 0.$
 - Non-negativity: $D(\mu, \nu) \ge 0$.
 - Data processing inequality: D(κ ∘ μ, κ ∘ ν) ≤ D(μ, ν) for every Markov kernel κ.

イロト イポト イヨト イヨト 二日

Definition (f-divergence)

Let \mathcal{X} be a measurable space, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ and $f : \mathbb{R}_+ \to \mathbb{R}$ a convex function such that f(1) = 0. The *f*-divergence between μ and ν is defined as

$$D_f(\mu,
u) \coloneqq \int_{\mathcal{X}} f\left(\frac{d\mu}{d
u}\right) \, \mathrm{d}
u + f'(\infty)\mu_{\perp
u}(\mathcal{X}).$$

イロト イボト イヨト イヨト
Definition (f-divergence)

Let \mathcal{X} be a measurable space, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ and $f : \mathbb{R}_+ \to \mathbb{R}$ a convex function such that f(1) = 0. The *f*-divergence between μ and ν is defined as

$$\mathcal{D}_f(\mu,
u)\coloneqq \int_{\mathcal{X}} f\left(rac{d\mu}{d
u}
ight) \,\mathrm{d}
u + f'(\infty)\mu_{\perp
u}(\mathcal{X}).$$

Reminder: Lebesgue decomposition

If we have two (sigma finite) measures $\mu, \nu \in \mathcal{M}(\mathcal{X})$, we can decompose μ into two parts, respectively absolutely continuous and singular w.r.t. ν :

$$\mu = \frac{d\mu}{d\nu} \cdot \nu + \mu_{\perp\nu}.$$

15-01-2025

11/17

Definition (f-divergence)

Let \mathcal{X} be a measurable space, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ and $f : \mathbb{R}_+ \to \mathbb{R}$ a convex function such that f(1) = 0. The *f*-divergence between μ and ν is defined as

$$\mathcal{D}_f(\mu,
u)\coloneqq \int_{\mathcal{X}} f\left(rac{d\mu}{d
u}
ight) \,\mathrm{d}
u + f'(\infty)\mu_{\perp
u}(\mathcal{X}).$$

Reminder: Lebesgue decomposition

If we have two (sigma finite) measures $\mu, \nu \in \mathcal{M}(\mathcal{X})$, we can decompose μ into two parts, respectively absolutely continuous and singular w.r.t. ν :

$$\mu = \frac{d\mu}{d\nu} \cdot \nu + \mu_{\perp\nu}.$$

 $\frac{d\mu}{d\nu}$ and $\mu_{\perp\nu}$ are known respectively as the *Radon-Nikodym derivative* of and the *singular part* of μ with respect to ν .

Lorenzo Luccioli

Information Theory in Lean 4

15-01-2025

11/17

Definition (f-divergence)

Let \mathcal{X} be a measurable space, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ and $f : \mathbb{R}_+ \to \mathbb{R}$ a convex function such that f(1) = 0. The *f*-divergence between μ and ν is defined as

$$\mathcal{D}_f(\mu,
u)\coloneqq \int_{\mathcal{X}} f\left(rac{d\mu}{d
u}
ight) \,\mathrm{d}
u + f'(\infty)\mu_{\perp
u}(\mathcal{X}).$$

Remark

If μ is absolutely continuous with respect to $\nu~(\mu\ll\nu),$ then the definition simplifies to

$$D_f(\mu, \nu) = \int_{\mathcal{X}} f\left(\frac{d\mu}{d\nu}\right) \,\mathrm{d}\nu.$$

(日)

Definition (f-divergence)

Let \mathcal{X} be a measurable space, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ and $f : \mathbb{R}_+ \to \mathbb{R}$ a convex function such that f(1) = 0. The *f*-divergence between μ and ν is defined as

$$\mathcal{D}_f(\mu,
u)\coloneqq \int_{\mathcal{X}} f\left(rac{d\mu}{d
u}
ight) \,\mathrm{d}
u + f'(\infty)\mu_{ot
u}(\mathcal{X}).$$

The class of f-divergences is very broad, and includes many well-known divergences.

- Kullback-Leibler divergence, with $f(x) = x \log x$.
- Total variation, with $f(x) = \frac{1}{2}|x-1|$.
- χ^2 -divergence, with $f(x) = (x 1)^2$.
- Hellinger α -divergence, with $f_{\alpha}(x) = \frac{x^{\alpha}-1}{\alpha-1}$ and $\alpha \in (0, +\infty) \setminus \{1\}$.

Let \mathcal{X} be a measurable space, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ and $f : \mathbb{R}_+ \to \mathbb{R}$ a convex function such that f(1) = 0. The *f*-divergence between μ and ν is defined as

$$D_f(\mu,
u) \coloneqq \int_{\mathcal{X}} f\left(\frac{d\mu}{d
u}\right) \, \mathrm{d}
u + f'(\infty)\mu_{\perp
u}(\mathcal{X}).$$

Lean definition (old)

$$\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\,\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ +\;\operatorname{derivAtTop}\,\mathrm{f}^{*}\,\mu.\operatorname{singularPart}\,\nu\;\operatorname{univ}\end{array}$$

Old definition

```
\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\;\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ +\;\operatorname{derivAtTop}\;\mathrm{f}^{*}\;\mu.\operatorname{singularPart}\;\nu\;\operatorname{univ}\end{array}
```

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへで

Old definition

```
\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\,\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ +\;\operatorname{derivAtTop}\,\mathrm{f}^{*}\,\mu.\operatorname{singularPart}\,\nu\;\operatorname{univ}\end{array}
```

Some issues with this definition:

Lorenzo Lucciol

Information Theory in Lean 4	15-01-2025

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Old definition

```
\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\;\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ +\operatorname{derivAtTop}\;\mathrm{f}^{*}\;\mu.\operatorname{singularPart}\;\nu\;\operatorname{univ}\end{array}
```

Some issues with this definition:

 Domain of f: ℝ instead of ℝ≥0∞ (ENNReal), forces us to use .toReal. Derivatives and convexity in Mathlib work better with real functions.

12/17

Old definition

```
\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\;\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ +\operatorname{derivAtTop}\;\mathrm{f}^{*}\;\mu.\operatorname{singularPart}\;\nu\;\operatorname{univ}\end{array}
```

Some issues with this definition:

- Domain of f: ℝ instead of ℝ≥0∞ (ENNReal), forces us to use .toReal. Derivatives and convexity in Mathlib work better with real functions.
- Codomain of f: we would like to allow infinite values.

12/17

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Old definition

```
\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\;\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ +\operatorname{derivAtTop}\;\mathrm{f}^{*}\;\mu.\operatorname{singularPart}\;\nu\;\operatorname{univ}\end{array}
```

Some issues with this definition:

- Domain of f: ℝ instead of ℝ≥0∞ (ENNReal), forces us to use .toReal. Derivatives and convexity in Mathlib work better with real functions.
- Codomain of f: we would like to allow infinite values.
- Bochner integral: forces us to use an if statement, cumbersome to use.

12/17

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Old definition

```
def fDiv (f : \mathbb{R} \to \mathbb{R}) (\mu \nu : Measure \alpha) : EReal :=
    if \neg Integrable (fun x \mapsto f ((\partial \mu / \partial \nu) x).toReal) \nu then \infty
    else \int x, f ((\partial \mu / \partial \nu) x).toReal \partial \nu
        + derivAtTop f * \mu.singularPart \nu univ
```

Some issues with this definition:

- Domain of $f: \mathbb{R}$ instead of $\mathbb{R} \ge 0\infty$ (ENNReal), forces us to use .toReal. Derivatives and convexity in Mathlib work better with real functions.
- Codomain of f: we would like to allow infinite values.
- Bochner integral: forces us to use an if statement, cumbersome to use.
- Output type: EReal. Do we really need/want to allow negative values?

Old definition

```
\begin{array}{l} \operatorname{def} \operatorname{fDiv}\left(\mathrm{f}:\mathbb{R}\to\mathbb{R}\right)\left(\mu\;\nu:\operatorname{Measure}\;\alpha\right):\operatorname{EReal}:=\\ \operatorname{if}\,\neg\;\operatorname{Integrable}\left(\operatorname{fun}\,\mathrm{x}\mapsto\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\right)\nu\;\operatorname{then}\,\infty\\ \operatorname{else}\;\int\,\mathrm{x},\,\mathrm{f}\left(\left(\partial\mu/\partial\nu\right)\,\mathrm{x}\right).\operatorname{toReal}\;\partial\nu\\ \;\;+\;\operatorname{derivAtTop}\;\mathrm{f}^{*}\;\mu.\operatorname{singularPart}\;\nu\;\operatorname{univ}\end{array}
```

New definition

structure DivFunction where toFun : $\mathbb{R} \ge 0\infty \to \mathbb{R} \ge 0\infty$ one : toFun 1 = 0 convexOn' : ConvexOn $\mathbb{R} \ge 0$ univ toFun continuous' : Continuous toFun

def fDiv (f : DivFunction) ($\mu \nu$: Measure α) : $\mathbb{R} \ge 0\infty := \int^{-} x$, f (($\partial \mu / \partial \nu$) x) $\partial \nu$ + f.derivAtTop * μ .singularPart ν .univ

Data Processing Inequality (DPI)

		< □ ▶	< ⊡ >	《문》 《문》	-2	500
Lorenzo Luccioli	Information Theory in Lean 4			15-01-2025		13/17

Let \mathcal{X} and \mathcal{Y} be measurable spaces, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ finite measures, $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ a Markov kernel, and $f \colon \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}$ a convex function such that f(1) = 0. Then

 $D_f(\kappa \circ \mu, \kappa \circ \nu) \leq D_f(\mu, \nu).$

イロト イポト イヨト イヨト 二日

Let \mathcal{X} and \mathcal{Y} be measurable spaces, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ finite measures, $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ a Markov kernel, and $f \colon \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}$ a convex function such that f(1) = 0. Then

 $D_f(\kappa \circ \mu, \kappa \circ \nu) \leq D_f(\mu, \nu).$

• A fundamental result in information theory.

Let \mathcal{X} and \mathcal{Y} be measurable spaces, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ finite measures, $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ a Markov kernel, and $f \colon \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}$ a convex function such that f(1) = 0. Then

$$D_f(\kappa \circ \mu, \kappa \circ \nu) \leq D_f(\mu, \nu).$$

- A fundamental result in information theory.
- The amount of information cannot be increased by processing data through a (potentially random) transformation.

Let \mathcal{X} and \mathcal{Y} be measurable spaces, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ finite measures, $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ a Markov kernel, and $f \colon \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}$ a convex function such that f(1) = 0. Then

$$D_f(\kappa \circ \mu, \kappa \circ \nu) \leq D_f(\mu, \nu).$$

- A fundamental result in information theory.
- The amount of information cannot be increased by processing data through a (potentially random) transformation.
- If we want to distinguish two distributions based on data sampled from them, we cannot make our job easier by processing the samples.

イロト イポト イヨト イヨト 二日

Let \mathcal{X} and \mathcal{Y} be measurable spaces, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ finite measures, $\kappa \colon \mathcal{X} \rightsquigarrow \mathcal{Y}$ a Markov kernel, and $f \colon \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}$ a convex function such that f(1) = 0. Then

$$D_f(\kappa \circ \mu, \kappa \circ \nu) \leq D_f(\mu, \nu).$$

- A fundamental result in information theory.
- The amount of information cannot be increased by processing data through a (potentially random) transformation.
- If we want to distinguish two distributions based on data sampled from them, we cannot make our job easier by processing the samples.
- We formalized several proofs of this result, along with many auxiliary results, like posterior kernels, hypothesis testing, lemmas about EReal, convex functions, rnDeriv, etc.

イロト イポト イヨト イヨト

O Deterministic kernels

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces

イロト 不得下 イヨト イヨト

3

15/17

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if X, Y are complete, separable metric spaces with Borel σ-algebras.

3

イロト イポト イヨト イヨト

15-01-2025

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - ► Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.

イロト イポト イヨト イヨト

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - ► Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing
 - Use a parametric family of divergences *I*_(β,γ) (statistical information) that naturally emerges from the hypothesis testing framework.

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - ► Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing
 - Use a parametric family of divergences *I*_(β,γ) (statistical information) that naturally emerges from the hypothesis testing framework.
 - $\mathcal{I}_{(\beta,\gamma)}$ naturally satisfies the DPI.

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing
 - Use a parametric family of divergences $\mathcal{I}_{(\beta,\gamma)}$ (statistical information) that naturally emerges from the hypothesis testing framework.
 - $\mathcal{I}_{(\beta,\gamma)}$ naturally satisfies the DPI.
 - Use a representation of f-divergences in terms of an integral of $\mathcal{I}_{(1,\gamma)}$ (this needs a generalization of the integration by parts, still sorried).

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing
 - Use a parametric family of divergences $\mathcal{I}_{(\beta,\gamma)}$ (statistical information) that naturally emerges from the hypothesis testing framework.
 - $\mathcal{I}_{(\beta,\gamma)}$ naturally satisfies the DPI.
 - Use a representation of f-divergences in terms of an integral of $\mathcal{I}_{(1,\gamma)}$ (this needs a generalization of the integration by parts, still sorried).
- General spaces

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing
 - Use a parametric family of divergences $\mathcal{I}_{(\beta,\gamma)}$ (statistical information) that naturally emerges from the hypothesis testing framework.
 - $\mathcal{I}_{(\beta,\gamma)}$ naturally satisfies the DPI.
 - Use a representation of f-divergences in terms of an integral of $\mathcal{I}_{(1,\gamma)}$ (this needs a generalization of the integration by parts, still sorried).
- General spaces
 - Similar to 2.

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへで 15-01-2025

15/17

- Deterministic kernels
 - Only applies if κ is a deterministic kernel.
 - ► Use the conditional Jensen's inequality (still sorried).
- Standard Borel spaces
 - Only applies if \mathcal{X}, \mathcal{Y} are complete, separable metric spaces with Borel σ -algebras.
 - Use Jensen's inequality.
 - Use the existence of the posterior kernels κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .
- General spaces using hypothesis testing
 - Use a parametric family of divergences *I*_(β,γ) (statistical information) that naturally emerges from the hypothesis testing framework.
 - $\mathcal{I}_{(\beta,\gamma)}$ naturally satisfies the DPI.
 - ► Use a representation of f-divergences in terms of an integral of I(1,γ) (this needs a generalization of the integration by parts, still sorried).

General spaces

- Similar to 2.
- Use 1 to skip part of the proof, avoiding the need for κ^{\dagger}_{μ} and κ^{\dagger}_{ν} .

15-01-2025

Integral represantation of f-divergences

• Given two probability measures μ, ν and a prior $\pi = (\beta, \gamma)$, an estimator is a function that tries to distinguish between μ and ν based on a data sample.

Integral represantation of f-divergences

- Given two probability measures μ, ν and a prior $\pi = (\beta, \gamma)$, an estimator is a function that tries to distinguish between μ and ν based on a data sample.
- $\mathcal{I}_{(\beta,\gamma)}(\mu,\nu)$ is the difference in performance between the best possible estimator and a "blind" estimator that cannot look at the data.

16/17

Integral represantation of f-divergences

- Given two probability measures μ, ν and a prior $\pi = (\beta, \gamma)$, an estimator is a function that tries to distinguish between μ and ν based on a data sample.
- $\mathcal{I}_{(\beta,\gamma)}(\mu,\nu)$ is the difference in performance between the best possible estimator and a "blind" estimator that cannot look at the data.

Theorem (Integral representation of f-divergences)

Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function such that $f(1) = f'_+(1) = 0$, $\mu, \nu \in \mathcal{M}(\mathcal{X})$ probability measures such that $\mu \ll \nu$. Then

$$D_f(\mu,\nu) = \int_{\mathbb{R}_+} \mathcal{I}_{(1,y)}(\mu,\nu) \,\mathrm{d}\gamma_f(y).$$

Where γ_f is the curvature measure of f.

イロト イポト イヨト イヨト 二日

Summary and Conclusions

Done

- fDiv, definition and API
- Exampes of information divergences: Kulback-Leibler, Hellinger, Rényi, Statistical Information.
- Hypothesis testing, definitions and connection with f-divergences
- Data Processing Inequality for f-divergences
- Posterior kernels and other operations on kernels, results about existing operations
- Other results about EReal, convex functions, rnDeriv, etc.

17/17
Summary and Conclusions

Done

- fDiv, definition and API
- Exampes of information divergences: Kulback-Leibler, Hellinger, Rényi, Statistical Information.
- Hypothesis testing, definitions and connection with f-divergences
- Data Processing Inequality for f-divergences
- Posterior kernels and other operations on kernels, results about existing operations
- Other results about EReal, convex functions, rnDeriv, etc.

Still To Do

- Generalized integration by parts (Riemann-Stieltjes integral)
- Conditional Jensen's inequality
- Complete the refactor of fDiv
- Porting to Mathlib

Summary and Conclusions

Done

- fDiv, definition and API
- Exampes of information divergences: Kulback-Leibler, Hellinger, Rényi, Statistical Information.
- Hypothesis testing, definitions and connection with f-divergences
- Data Processing Inequality for f-divergences
- Posterior kernels and other operations on kernels, results about existing operations
- Other results about EReal, convex functions, rnDeriv, etc.

Still To Do

- Generalized integration by parts (Riemann-Stieltjes integral)
- Conditional Jensen's inequality
- Complete the refactor of fDiv
- Porting to Mathlib

Thank you for your attention ;)