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Overview

TLS (Testing lower bounds) project, led by Rémy Degenne.

Information theory studies how to quantify information.
Information divergences: given µ, ν two probability distributions,
D(µ, ν) measures how easy it is to tell them apart.
Data processing inequality (DPI): if we process the data produced by
µ and ν, we cannot make them easier to distinguish.

D(κ ◦ µ, κ ◦ ν) ≤ D(µ, ν)
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Transition kernels
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Definition of kernel

Let X ,Y be measurable spaces, with their respective σ-algebras FX ,FY ,
also let M(X ) be the set of measures on X .

Definition (Transition kernel)
A kernel from X to Y is a function

κ : X × FY → R+

such that:

for every x ∈ X the function κ(x , ·) is a measure on Y,
for every B ∈ FY the function x 7→ κ(x ,B) is measurable.

We write κ : X ⇝ Y.
If κ(x , ·) is a probability measure for all x , we say that κ is a Markov kernel.

A kernel X ⇝ Y can also be seen as a measurable function X → M(Y).
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Lean implementation

structure Kernel (α β : Type*)
[MeasurableSpace α] [MeasurableSpace β] where

toFun : α → Measure β
measurable’ : Measurable toFun

The measurable structure on Measure β is the canonical one given by the
projection maps µ 7→ µ(s) for s ⊆ β measurable, and is automatically
inferred by Lean.

instance instMeasurableSpace : MeasurableSpace (Measure α) :=
⊔ (s : Set α) (_ : MeasurableSet s),

(borel R≥0∞).comap fun µ => µ s
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What are kernels?

Kernels are a way of representing the idea of a transformation that involves
some randomness, in other words, a stochastic function.

Kernels are a generalization of:

measures: x 7→ µ is a constant kernel
measurable functions: x 7→ δf (x) is a deterministic kernel
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Kernel operations

Let κ : X ⇝ Y and µ ∈ M(X ). We can combine κ and µ in various ways.

Composition: κ ◦ µ ∈ M(Y). Also η ◦ κ : X ⇝ Z for η : Y ⇝ Z.
Posterior kernel (or Bayesian inverse): κ†µ : Y ⇝ X .

▶ κ†
µ is not guaranteed to exist. Some sufficient hypotheses are: κ, µ

finite, X standard Borel space (complete, separable metric space with
Borel σ-algebra).

Composition product: κ⊗ µ ∈ M(X × Y). Also κ⊗ η : X ⇝ Y × Z
for η : X × Y ⇝ Z.
Product: κ× η : X ⇝ Y × Z for η : X ⇝ Z.
Parallel product: κ ∥ η : X × Z ⇝ Y ×W for η : Z ⇝W.

Remark (Lean notation)

Composition : κ ◦m µ, η ◦k κ

Comp. prod. : µ ⊗m κ, κ ⊗k η

Product : κ ×k η

Parallel product : κ ∥k η

Posterior kernel : κ†µ
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Information divergences
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Information divergence

A measure of dissimilarity between two probability distributions, in
particular it is a function of the following shape:

D : M(X )×M(X ) → R

Not necessarily a metric, can be asymmetric.
Some properties that a good divergence should verify, at least for
probability measures µ, ν:

▶ D(µ, µ) = 0.
▶ Non-negativity: D(µ, ν) ≥ 0.
▶ Data processing inequality: D(κ ◦ µ, κ ◦ ν) ≤ D(µ, ν) for every Markov

kernel κ.
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Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, µ, ν ∈ M(X ) and f : R+ → R a convex
function such that f (1) = 0. The f-divergence between µ and ν is defined
as

Df (µ, ν) :=

∫
X
f

(
dµ

dν

)
dν + f ′(∞)µ⊥ν(X ).

Lean definition (old)

def fDiv (f : R → R) (µ ν : Measure α) : EReal :=
if ¬ Integrable (fun x 7→ f ((∂µ/∂ν) x).toReal) ν then ∞
else

∫
x, f ((∂µ/∂ν) x).toReal ∂ν

+ derivAtTop f * µ.singularPart ν univ

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 11 / 17



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, µ, ν ∈ M(X ) and f : R+ → R a convex
function such that f (1) = 0. The f-divergence between µ and ν is defined
as

Df (µ, ν) :=

∫
X
f

(
dµ

dν

)
dν + f ′(∞)µ⊥ν(X ).

Reminder: Lebesgue decomposition
If we have two (sigma finite) measures µ, ν ∈ M(X ), we can decompose µ
into two parts, respectively absolutely continuous and singular w.r.t. ν:

µ =
dµ

dν
· ν + µ⊥ν .

dµ

dν
and µ⊥ν are known respectively as the Radon-Nikodym derivative of

and the singular part of µ with respect to ν.

Lean definition (old)

def fDiv (f : R → R) (µ ν : Measure α) : EReal :=
if ¬ Integrable (fun x 7→ f ((∂µ/∂ν) x).toReal) ν then ∞
else

∫
x, f ((∂µ/∂ν) x).toReal ∂ν

+ derivAtTop f * µ.singularPart ν univ

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 11 / 17



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, µ, ν ∈ M(X ) and f : R+ → R a convex
function such that f (1) = 0. The f-divergence between µ and ν is defined
as

Df (µ, ν) :=

∫
X
f

(
dµ

dν

)
dν + f ′(∞)µ⊥ν(X ).

Reminder: Lebesgue decomposition
If we have two (sigma finite) measures µ, ν ∈ M(X ), we can decompose µ
into two parts, respectively absolutely continuous and singular w.r.t. ν:

µ =
dµ

dν
· ν + µ⊥ν .

dµ

dν
and µ⊥ν are known respectively as the Radon-Nikodym derivative of

and the singular part of µ with respect to ν.

Lean definition (old)

def fDiv (f : R → R) (µ ν : Measure α) : EReal :=
if ¬ Integrable (fun x 7→ f ((∂µ/∂ν) x).toReal) ν then ∞
else

∫
x, f ((∂µ/∂ν) x).toReal ∂ν

+ derivAtTop f * µ.singularPart ν univ

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 11 / 17



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, µ, ν ∈ M(X ) and f : R+ → R a convex
function such that f (1) = 0. The f-divergence between µ and ν is defined
as

Df (µ, ν) :=

∫
X
f

(
dµ

dν

)
dν + f ′(∞)µ⊥ν(X ).

Remark
If µ is absolutely continuous with respect to ν (µ ≪ ν), then the definition
simplifies to

Df (µ, ν) =

∫
X
f

(
dµ

dν

)
dν.

Lean definition (old)

def fDiv (f : R → R) (µ ν : Measure α) : EReal :=
if ¬ Integrable (fun x 7→ f ((∂µ/∂ν) x).toReal) ν then ∞
else

∫
x, f ((∂µ/∂ν) x).toReal ∂ν

+ derivAtTop f * µ.singularPart ν univ

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 11 / 17



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, µ, ν ∈ M(X ) and f : R+ → R a convex
function such that f (1) = 0. The f-divergence between µ and ν is defined
as

Df (µ, ν) :=

∫
X
f

(
dµ

dν

)
dν + f ′(∞)µ⊥ν(X ).

The class of f-divergences is very broad, and includes many well-known
divergences.

Kullback-Leibler divergence, with f (x) = x log x .
Total variation, with f (x) = 1

2 |x − 1|.
χ2-divergence, with f (x) = (x − 1)2.
Hellinger α-divergence, with fα(x) =

xα−1
α−1 and α ∈ (0,+∞) {1}.

Lean definition (old)

def fDiv (f : R → R) (µ ν : Measure α) : EReal :=
if ¬ Integrable (fun x 7→ f ((∂µ/∂ν) x).toReal) ν then ∞
else

∫
x, f ((∂µ/∂ν) x).toReal ∂ν

+ derivAtTop f * µ.singularPart ν univ

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 11 / 17



Definition of f-divergence

Definition (f-divergence)

Let X be a measurable space, µ, ν ∈ M(X ) and f : R+ → R a convex
function such that f (1) = 0. The f-divergence between µ and ν is defined
as

Df (µ, ν) :=

∫
X
f

(
dµ

dν

)
dν + f ′(∞)µ⊥ν(X ).

Lean definition (old)

def fDiv (f : R → R) (µ ν : Measure α) : EReal :=
if ¬ Integrable (fun x 7→ f ((∂µ/∂ν) x).toReal) ν then ∞
else

∫
x, f ((∂µ/∂ν) x).toReal ∂ν

+ derivAtTop f * µ.singularPart ν univ

Lorenzo Luccioli Information Theory in Lean 4 15-01-2025 11 / 17



Refactor (ongoing)

Old definition
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New definition

structure DivFunction where
toFun : R≥0∞ → R≥0∞
one : toFun 1 = 0
convexOn’ : ConvexOn R≥0 univ toFun
continuous’ : Continuous toFun

def fDiv (f : DivFunction) (µ ν : Measure α) : R≥0∞ :=∫ − x, f ((∂µ/∂ν) x) ∂ν + f.derivAtTop * µ.singularPart ν .univ
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Data Processing Inequality (DPI)
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Data Processing Inequality for f-divergences

Theorem (Data Processing Inequality)
Let X and Y be measurable spaces, µ, ν ∈ M(X ) finite measures,
κ : X ⇝ Y a Markov kernel, and f : R+ → R a convex function such that
f (1) = 0. Then

Df (κ ◦ µ, κ ◦ ν) ≤ Df (µ, ν).

A fundamental result in information theory.
The amount of information cannot be increased by processing data
through a (potentially random) transformation.
If we want to distinguish two distributions based on data sampled
from them, we cannot make our job easier by processing the samples.
We formalized several proofs of this result, along with many auxiliary
results, like posterior kernels, hypothesis testing, lemmas about EReal,
convex functions, rnDeriv, etc.
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Different proofs

1 Deterministic kernels

▶ Only applies if κ is a deterministic kernel.
▶ Use the conditional Jensen’s inequality (still sorried).

2 Standard Borel spaces

▶ Only applies if X ,Y are complete, separable metric spaces with Borel
σ-algebras.

▶ Use Jensen’s inequality.
▶ Use the existence of the posterior kernels κ†

µ and κ†
ν .

3 General spaces using hypothesis testing

▶ Use a parametric family of divergences I(β,γ) (statistical information)
that naturally emerges from the hypothesis testing framework.

▶ I(β,γ) naturally satisfies the DPI.
▶ Use a representation of f-divergences in terms of an integral of I(1,γ)

(this needs a generalization of the integration by parts, still sorried).

4 General spaces

▶ Similar to 2.
▶ Use 1 to skip part of the proof, avoiding the need for κ†

µ and κ†
ν .
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Integral represantation of f-divergences

Given two probability measures µ, ν and a prior π = (β, γ), an
estimator is a function that tries to distinguish between µ and ν based
on a data sample.

I(β,γ)(µ, ν) is the difference in performance between the best possible
estimator and a "blind" estimator that cannot look at the data.

Theorem (Integral representation of f-divergences)
Let f : R → R be a convex function such that f (1) = f ′+(1) = 0,
µ, ν ∈ M(X ) probability measures such that µ ≪ ν. Then

Df (µ, ν) =

∫
R+

I(1,y)(µ, ν) dγf (y).

Where γf is the curvature measure of f .
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Summary and Conclusions

Done
fDiv, definition and API
Exampes of information divergences: Kulback-Leibler, Hellinger,
Rényi, Statistical Information.
Hypothesis testing, definitions and connection with f-divergences
Data Processing Inequality for f-divergences
Posterior kernels and other operations on kernels, results about
existing operations
Other results about EReal, convex functions, rnDeriv, etc.

Still To Do
Generalized integration by parts (Riemann-Stieltjes integral)
Conditional Jensen’s inequality
Complete the refactor of fDiv
Porting to Mathlib

Thank you for your attention :)
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