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1 Completed Lemmas

Throughout, suppose X and Y are topological spaces, and f : X → Y is continuous. All families of sets
are assumed to be pairwise disjoint. Let I be the sigma ideal generated by Borel partial sections of f (in
particular, A ∈ I if and only if A =

⋃
n∈N An, where each An is Borel and f ↾ An is injective for all n).

We say a family F of sets is null if there exists a Borel cover (BF )F∈F of Y such that for each F ∈ F ,
F ∩ f−1(BF ) ∈ I. One can show that a singleton {F} is null if and only if F ∈ I.

Lemma 1.1. Suppose F ∪ {U} is a family of sets in X with U Borel, and further suppose we can write
(U)2 =

⋃
n∈N Vn ×Wn with all Vn,Wn Borel and each F ∪ {Vn,Wn} null. Then F ∪ {U} is null.

Lemma 1.2. Suppose F is a family of sets in X, and suppose there is a Borel cover (An)n∈N of Y such
that for each n ∈ N, the family (F ∩ f−1(An))F∈F is null. Then F is null.

Observation 1. Suppose X is separable and metrizable, and fix a metric on X. Given ε > 0 and closed
U ⊆ X, we can write (U)2 =

⋃
n∈N Vn ×Wn for closed Vn,Wn ⊆ U of diameter ≤ ε.

Observation 2. Suppose Y is separable and metrizable, and fix a metric on Y . Given ε > 0, we can write
Y as a countable union of closed sets of diameter ≤ ε.

2 To Be Proved

Lemma 2.1 (Splitting one set). Suppose X is separable and metrizable, and a metric on it. Further suppose
F = {F1, . . . , Fm} is a non-null family of closed sets in X. Then for any ε > 0 and k ≤ m there exist closed
disjoint Fk,0, Fk,1 ⊆ Fk of diameter ≤ ε such that {F1, . . . , Fk−1, Fk,0, Fk,1, Fk+1 . . . , Fm} is non-null.

Proof. By Observation 1, we can find closed Vn,Wn ⊆ F1 of diameter ≤ ε such that (F1)
2 =

⋃
n∈N Vn ×Wn.

We claim there is some n such that {F2, . . . , Fm} ∪ {Vn,Wn} is non-null. Indeed, if not, then by Lemma
1.1, {F2, . . . , Fm} ∪ {F1} = F would be null, a contradiction. Fixing such an n, we may take F1,0 = Vn

and F1,1 = Wn, noting they are closed and of appropriate diameter for free, and they are disjoint as
U1 × U2 ⊆ (U)2.

Lemma 2.2 (Splitting multiple sets). Suppose X is separable and metrizable, and fix a metric on it.
Further suppose F = {F1, . . . , Fm} is a non-null family of closed sets in X and k ≤ m. Then for
any ε > 0, there exist closed disjoint F1,0, F1,1 ⊆ F1, . . . , Fk,0, Fk,1 ⊆ Fk of diameter ≤ ε such that
{F1,0, F1,1, . . . , Fk,0, Fk,1, Fk+1, . . . , Fm} is non-null.

Proof. We proceed by induction on k. For the base case k = 0 there’s nothing to do. Now suppose the result
holds for all k ≤ i, and consider k = i+ 1. By Lemma 2.1, we can find closed disjoint Fi+1,0, Fi+1,1 ⊆ Fi+1

of appropriate diameter such that {F1, . . . , Fi, Fi+1,0, Fi+1, . . . , Fm} is non-null. We can then apply the
induction hypothesis to this collection to split the first i sets.

Lemma 2.3 (Refining the image). Suppose Y is separable and metrizable, and fix a metric on it. Further
suppose F is a non-null family of closed sets in X. Then for any ε > 0 there exists a non-null family
(SF )F∈F of closed sets in X such that SF ⊆ F for all F ∈ F and f(

⋃
F∈F SF ) has diameter ≤ ε.
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Proof. By Observation 2, we can write Y =
⋃

n∈N An for closed An of diameter ≤ ε. We claim there exists an
n such that the family (F ∩f−1(An))F∈F is non-null. If not, by Lemma 1.2 F is null, a contradiction. Fixing
such an n, set SF = F ∩ f−1(An) ⊆ F . Each SF is closed since since F and An are and f is continuous.
Furthermore, f(

⋃
F∈F ) ⊆ An, which has diameter ≤ ε by construction, so we’re done.

Lemma 2.4 (Splitting Lemma). Suppose X and Y are separable and metrizable, and fix metrics on both
of them. Further suppose F = F1, . . . , Fm is a non-null family of closed sets in X. Then for any ε > 0,
there exist closed F1,0, F1,1 ⊆ F1, . . . , Fm,0, Fm,1 ⊆ Fm of diameter ≤ ε such that f(

⋃m
n=1{Fn,1, Fn,2}) has

diameter ≤ ε and
⋃m

n=1{Fn,1, Fn,2} is non-null.

Proof. By Lemma 2.2 with k = m, we may obtain closed disjoint F ′
n,0, F

′
n,1 ⊆ Fn for each i with diameter

≤ ε such that
⋃m

n=1{F ′
n,0, F

′
n,1} is non-null. Applying Lemma 2.3 to the collection of F ′s, we obtain the

desired collection.

Lusin-Novikov Theorem. Let X be a Polish space and Y be a separable metrizable space. Exactly one of
the following holds.

(1) X can be covered by countably many Borel partial sections of f .

(2) A fiber of f contains a Cantor set.

Proof. Note that (1) and (2) cannot both simultaneously hold, as (2) implies you need at least continuum-
many partial sections to cover X. It thus suffices to show ¬(1) ⇒ (2). Towards that end, suppose X cannot
be covered by countably many Borel partial sections of f . This means X /∈ I and thus {X} is non-null.

For each n ∈ N we define a non-null collection (Fℓ) of closed disjoint sets in X indexed by 0, 1-strings
of ℓ length n by recursion on n. For n = 0, define Fnil = X. For n + 1, we apply the splitting lemma with
ε = 2−n on the collection for length n, and define Fℓ⌢0 = Fℓ,0 and Fℓ⌢1 = Fℓ,1 for each ℓ.

Using the induced map from the CantorScheme library, we can show the scheme is ClosureAntitone,
disjoint, and has vanishing diameter, so the induced map is total, continuous, and injective, thus getting an
injection from the Cantor set into X. We can then use the vanishing diameter on the output to see that this
entire Cantor set lies in a single fiber of f .
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