
Metaprogramming in Lean 4

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik
Böving, Jannis Limperg, Siddhartha Gadgil, Siddharth
Bhat

Contents

Introduction 1
What’s the goal of this book? . 1
What does it mean to be in meta? . 1
Metaprogramming examples . 2

Building a command . 2
Building a DSL and a syntax for it . 3
Writing our own tactic . 5

Printing Messages . 5

Expressions 7
Expression Data . 9
de-Bruijn Indexes . 9
Constructing Expressions . 9

MetaM 12
Smart constructors for expressions . 12
Meta variables . 14
Telescopes . 17

Syntax 18
Declaring Syntax . 18

Declaration helpers . 18
Free form syntax declarations . 20
Syntax combinators . 21

Operating on Syntax . 23
Constructing new Syntax . 24
Matching on Syntax . 24
Mini Project . 26

Macros 27
What is a macro . 27
Simplifying macro declaration . 28

i

Metaprogramming in Lean 4

Hygiene issues and how to solve them . 29
MonadQuotation and MonadRef . 31
Mini project . 32
Reading further . 33

Elaboration 34
Command elaboration . 34

Giving meaning to commands . 34
Command elaboration . 35
Making our own . 35
Mini project . 37

Term elaboration . 38
Giving meaning to terms . 38
Term elaboration . 38
Making our own . 40
Mini project . 40

Embedding DSLs By Elaboration 42

Tactics 48
The simplest tactic: sorry . 48
The custom_trivial tactic: Accessing Hypotheses 50
Tweaking the context . 55
Tactics by Macro Expansion . 57

Implementing trivial: Extensible Tactics by Macro Expansion 57
Implementing <;>: Tactic Combinators by Macro Expansion 59
FAQ . 59

Lean4 Cheat-sheet 63
Extracting information . 63
Playing around with expressions . 64
Further commands . 64
Printing and errors . 64

Options 65
Options in meta programming . 66
Making our own . 66

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

ii

Metaprogramming in Lean 4

Pretty Printing 67
Delaboration . 67

Making our own . 68
Unexpanders . 69

Mini project . 70

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

iii

Introduction

What’s the goal of this book?

This book aims to build up enough knowledge about metaprogramming in Lean 4
so you can be comfortable enough to start building your own meta helpers.

We by no means intend to provide an exhaustive exploration/explanation of the
entire Lean 4 metaprogramming API. We also don’t cover the topic of monadic
programming in Lean 4. However, the examples provided will be simple enough
for you to follow and comprehend without a super deep understanding of monadic
programming.

What does it mean to be in meta?

When we write code in most programming languages such as Python, C, Java or
Scala, we usually have to stick to a pre-defined syntax otherwise the compiler or
the interpreter won’t be able to figure out what we’re trying to say. In Lean, that
would be defining an inductive type, implementing a function, proving a theorem
etc. The compiler, then, has to parse the code, build an abstract syntax tree and
elaborate its syntax nodes into terms that can be processed by the language kernel.
We say that such activities performed by the compiler are done in themeta-level,
which will be studied throughout the book. And we also say that the common usage
of the language syntax is done in the object-level.

In most systems, the meta-level activities are done in a different language to the
one that we use to write code. In Isabelle, the meta-level language is ML and Scala.
In Coq, it’s OCaml. In Agda it’s Haskell. In Lean 4, the meta code is mostly written
in Lean itself, with a few components written in C++.

One cool thing about Lean, though, is that it allows us to define custom syntax
nodes and to implement our own meta-level routines to elaborate those in the very
same development environment that we use to perform object-level activities. So

1

Metaprogramming in Lean 4

for example, one can write their own notation to instantiate a term of a certain type
and use it right away, on the same file! This concept is generally called reflection.
We can say that, in Lean, the meta-level is reflected to the object-level.

Since the objects defined in themeta-level are not the ones we’re most interested in
proving theorems about, it can sometimes be overly tedious to prove that they are
type correct. For example, we don’t care about proving that a recursive function
to traverse an expression is well founded. Thus, we can use the partial keyword
if we’re convinced that our function terminates. In the worst case scenario, our
function gets stuck in a loop but the kernel is not reached/affected.

Let’s see some example use cases of metaprogramming in Lean.

Metaprogramming examples

The following examples are meant for mere illustration. Don’t worry if you don’t
understand the details for now.

Building a command

Suppose we want to build a helper command #assertType which tells whether a
given term is of a certain type. The usage will be:

#assertType <term> : <type>

Let’s see the code:

import Lean

elab "#assertType " termStx:term " : " typeStx:term : command =>
open Lean.Elab Command Term in
liftTermElabM `assertTypeCmd
try
let tp ← elabType typeStx
let tm ← elabTermEnsuringType termStx tp
synthesizeSyntheticMVarsNoPostponing
logInfo "success"

catch | _ => throwError "failure"

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

2

https://en.wikipedia.org/wiki/Reflective_programming

Metaprogramming in Lean 4

#assertType 5 : Nat -- success
#assertType [] : Nat -- failure

We started by using elab to define a command syntax, which, when parsed by the
compiler, will trigger the incoming computation.

At this point, the code should be running in the CommandElabM monad. We then use
liftTermElabM to access the TermElabM monad, which allows us to use elabType
and elabTermEnsuringType in order to build expressions out of the syntax nodes
typeStx and termStx.

First we elaborate the expected type tp : Expr and then we use it to elaborate the
term tm : Expr, which should have the type tp otherwise an error will be thrown.

We also add synthesizeSyntheticMVarsNoPostponing, which forces Lean to elab-
orate metavariables right away. Without that line, #assertType 5 : ?_ would
result in success.

If no error is thrown until now then the elaboration succeeded and we can use
logInfo to output “success”. If, instead, some error is caught, then we use throw-
Error with the appropriate message.

Building a DSL and a syntax for it

Let’s parse a classic grammar, the grammar of arithmetic expressions with addi-
tion, multiplication, naturals, and variables. We’ll define an AST, and use operators
+ and * to denote building an arithmetic AST. Here’s the AST that we will be pars-
ing:

inductive Arith : Type where
| add : Arith → Arith → Arith -- e + f
| mul : Arith → Arith → Arith -- e * f
| nat : Nat → Arith -- constant
| var : String → Arith -- variable

Now we declare a syntax category to describe the grammar that we will be parsing.
Notice that we control the precedence of + and * by writing syntax:75 for multi-
plication indicating that multiplication binds tighter than addition (the higher the
number, the tighter the binding). This allows us to declare precedence when defin-
ing new syntax.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

3

Metaprogramming in Lean 4

declare_syntax_cat arith
syntax num : arith -- nat for Arith.nat
syntax str : arith -- strings for Arith.var
syntax arith " + " arith : arith -- Arith.add
syntax:75 arith " * " arith : arith -- Arith.mul
syntax " (" arith ") " : arith -- bracketed expressions

-- Auxiliary notation for translating `arith` into `term`
syntax " ⟪ " arith " ⟫ " : term

-- Our macro rules perform the "obvious" translation:
macro_rules
| `(⟪ $s:str ⟫) => `(Arith.var $s)
| `(⟪ $num:num ⟫) => `(Arith.nat $num)
| `(⟪ $x:arith + $y:arith ⟫) => `(Arith.add ⟪ $x ⟫ ⟪ $y ⟫)
| `(⟪ $x:arith * $y:arith ⟫) => `(Arith.mul ⟪ $x ⟫ ⟪ $y ⟫)
| `(⟪ ($x) ⟫) => `(⟪ $x ⟫)

#check ⟪ "x" * "y" ⟫
-- Arith.mul (Arith.symbol "x") (Arith.symbol "y")

#check ⟪ "x" + "y" ⟫
-- Arith.add (Arith.symbol "x") (Arith.symbol "y")

#check ⟪ "x" + 20 ⟫
-- Arith.add (Arith.symbol "x") (Arith.int 20)

#check ⟪ "x" + "y" * "z" ⟫ -- precedence
-- Arith.add (Arith.symbol "x") (Arith.mul (Arith.symbol "y") (Arith.symbol "z"))

#check ⟪ "x" * "y" + "z" ⟫ -- precedence
-- Arith.add (Arith.mul (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

#check ⟪ ("x" + "y") * "z" ⟫ -- brackets
-- Arith.mul (Arith.add (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

4

Metaprogramming in Lean 4

Writing our own tactic

Let’s create a tactic that adds a new hypothesis to the context with a given name
and postpones the need for its proof to the very end. It’s going to be called suppose
and is used like this:

suppose <name> : <type>

So let’s see the code:

open Lean Meta Elab Tactic Term in
elab "suppose " n:ident " : " t:term : tactic => do
let n : Name := n.getId
let mvarId ← getMainGoal
withMVarContext mvarId do
let t ← elabType t
let p ← mkFreshExprMVar t MetavarKind.syntheticOpaque n
let (_, mvarIdNew) ← intro1P $ ← assert mvarId n t p
replaceMainGoal [p.mvarId!, mvarIdNew]

evalTactic $ ← `(tactic|rotate_left)

example : 0 + a = a := by
suppose add_comm : 0 + a = a + 0
rw [add_comm]; rfl -- closes the initial main goal
rw [Nat.zero_add]; rfl -- proves `add_comm`

We start by storing the main goal in mvarId and using it as a parameter of with-
MVarContext to make sure that our elaborations will work with types that depend
on other variables in the context.

This time we’re using mkFreshExprMVar to create a metavariable expression for the
proof of t, which we can introduce to the context using intro1P and assert.

To require the proof of the new hypothesis as a goal, we call replaceMainGoal
passing a list with p.mvarId! in the head. And then we can use the rotate_left
tactic to move the recently added top goal to the bottom.

Printing Messages

In the #assertType example, we used logInfo to make our command print some-
thing. If, instead, we just want to perform a quick debug, we can use dbg_trace.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

5

Metaprogramming in Lean 4

They behave a bit differently though, as we can see below:

elab "traces" : tactic => do
let array := List.replicate 2 (List.range 3)
Lean.Elab.logInfo m!"logInfo: {array}"
dbg_trace f!"dbg_trace: {array}"

example : True := by -- `example` is underlined in blue, outputting:
-- dbg_trace: [[0, 1, 2], [0, 1, 2]]

traces -- now `traces` is underlined in blue, outputting
-- logInfo: [[0, 1, 2], [0, 1, 2]]

trivial

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

6

Expressions

Expressions (terms of type Expr) carry the data used to communicate with the Lean
kernel for core tasks such as type inference and definitional equality checks.

In Lean, terms and types are represented by expressions. For instance, let’s con-
sider 1 of type Nat. The type Nat is represented as a constant with the name “Nat”.
And then 1 is an application of the function Nat.succ to the term Nat.zero, so all
this is represented as an application, given a constant named “Nat.succ” and a
constant named “Nat.zero”.

That example gives us an idea of what we’re aiming at: we use expressions to
represent all Lean terms at the meta level. Let’s check the precise definition of
Expr.

import Lean

namespace Playground

inductive Expr where
| bvar : Nat → Data → Expr -- bound variables
| fvar : FVarId → Data → Expr -- free variables
| mvar : MVarId → Data → Expr -- meta variables
| sort : Level → Data → Expr -- Sort
| const : Name → List Level → Data → Expr -- constants
| app : Expr → Expr → Data → Expr -- application
| lam : Name → Expr → Expr → Data → Expr -- lambda abstraction
| forallE : Name → Expr → Expr → Data → Expr -- (dependent) arrow
| letE : Name → Expr → Expr → Expr → Data → Expr -- let expressions
-- less essential constructors:
| lit : Literal → Data → Expr -- literals
| mdata : MData → Expr → Data → Expr -- metadata
| proj : Name → Nat → Expr → Data → Expr -- projection

7

https://github.com/leanprover/lean4/blob/master/src/Lean/Expr.lean

Metaprogramming in Lean 4

end Playground

What is each of these constructors doing?

• bvar is a bound variable. For example, the x in fun x => x + 2 or ∑ x, x².
This is any occurrence of a variable in an expression where there is a binder
above it. Why is the argument a Nat? This is called a de-Bruijn index and will
be explained ahead. You can figure out the type of a bound variable by looking
at its binder, since the binder always has the type information for it.

• fvar is a free variable. These are variables which are not bound by a binder.
An example is x in x + 2. Note that you can’t just look at a free variable x and
tell what its type is, there needs to be a context which contains a declaration
for x and its type. A free variable has an ID that tells you where to look for it
in a LocalContext. In Lean 3, free variables were called “local constants” or
“locals”.

• mvar is ametavariable. There will be much more on these later, but you can
think of it as a placeholder or a ‘hole’ in an expression that needs to be filled
at a later point.

• sort is used for Type u, Prop etc.
• const is a constant that has been defined earlier in the Lean document.
• app is a function application. Multiple arguments are done using partial ap-
plication: f x y ↝ app (app f x) y.

• lam n t b is a lambda expression (fun ($n : $t) => $b). The b argument is
called the body. Note that you have to give the type of the variable you are
binding.

• forallE n t b is a dependent arrow expression (($n : $t) → $b). This is
also sometimes called a Π-type or Π-expression. Note that the non-dependent
arrow α → β is a special case of (a : α) → β where β doesn’t depend on a.
The E on the end of forallE is to distinguish it from the forall keyword.

• letE n t v b is a let binder (let ($n : $t) := $v in $b).
• lit is a literal, this is a number or string literal like 4 or "hello world".
These are not strictly necessary for the kernel, but they are kept mainly for
convenience. (Ie in Lean 3, there were a load of tricks needed to store 11234
: Nat as something more efficient than succ $ succ $ succ ... $ succ zero)

• mdata is just a way of storing extra information on expressions that might be
useful, without changing the nature of the expression.

• proj is for projection. Suppose you have a structure such as p : α × β, rather
than storing the projection π₁ p as app π₁ p, it is expressed as proj Prod 0
p. This is for efficiency reasons ([todo] find link to docstring explaining this).

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

8

Metaprogramming in Lean 4

Expression Data

If you look the constructors of Expr, you will see that all of them have a Data argu-
ment. This Data field contains some extra cached information about the expression
that is useful for speeding up some common operations. These are things like: a
hash of the Expr, whether or not the Expr contains free variables, metavariables
or bound variables and also it is where the BinderInfo is stored for forallE and
lam.

This data param means that you should never construct instances of Expr directly
using the Expr constructors but instead use the helper methods (mkLambda, mkApp
etc) that compute Data for you.

de-Bruijn Indexes

Consider the following lambda expression (λ f x => f x x) (λ x y => x + y)
5, we have to be very careful when we reduce this, because we get a clash in the
variable x.

To avoid variable name-clash carnage, Exprs use a nifty trick called de-Bruijn
indexes. In de-Bruijn indexing, each variable bound by a lam or a forallE is con-
verted into a number #n. The number says how many binders up the Expr tree we
should look to find the binder which binds this variable. So our above example
would become (putting wildcards _ in the type arguments for now for brevity): app
(app (lam `f _ (lam `x _ (app (app #1 #0) #0))) (lam `x _ (lam `y _ (app (app
plus #1) #0)))) five Now we don’t need to rename variables when we perform
β-reduction. We also really easily check if two Exprs containing bound expressions
are equal.

This is why the signature of the bvar case is Nat → Expr and not Name → Expr. If
in our Expr, all bvars are bound, we say that the Expr is closed. The process of
replacing all instances of an unbound bvar with an Expr is called instantiation.
Going the other way is called abstraction.

Constructing Expressions

As mentioned above, you should never construct instances of Expr directly using
the Expr constructors but instead use helper methods that not only compute Data

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

9

Metaprogramming in Lean 4

but also take care of other things for you. Here we give examples and brief de-
scriptions of some basic helpers.

The simplest expressions we can construct are constants. We use mkConst with
argument a name. Below are two examples of this, both giving an expression for
the natural number 0.

The second form (with double backticks) is better, as it resolves the name to a
global name, checking, in the process that it is valid.

open Lean

def z' := mkConst `Nat.zero
#eval z' -- Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default))

def z := mkConst ``Nat.zero
#eval z -- Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default))

To illustrate the difference, here are two further examples. The first definition is
unsafe as it is not valid without open Nat in the context. On the other hand, the
second resolves correctly.

open Nat

def z₁ := mkConst `zero
#eval z₁ -- Lean.Expr.const `zero [] (Expr.mkData 790182631 (bi := Lean.BinderInfo.default))

def z₂ := mkConst ``zero
#eval z₂ -- Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default))

The next class of expressions we consider are function applications. These can be
built using mkApp with the first argument being an expression for the function and
the second being an expression for the argument.

Here are two examples. The first is simply a constant applied to another. The
second is a recursive definition giving an expression as a function of a natural
number.

def one := mkApp (mkConst ``Nat.succ) z
#eval one
-- Lean.Expr.app
-- (Lean.Expr.const `Nat.succ [] (Expr.mkData 3403344051 (bi := Lean.BinderInfo.default)))

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

10

Metaprogramming in Lean 4

-- (Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default)))
-- (Expr.mkData 3354277877 (approxDepth := 1) (bi := Lean.BinderInfo.default))

def natExpr: Nat → Expr
| 0 => z
| n + 1 => mkApp (mkConst ``Nat.succ) (natExpr n)

Next we use the variant mkAppN which allows application with multiple argu-
ments.

def sumExpr : Nat → Nat → Expr
| n, m => mkAppN (mkConst ``Nat.add) #[natExpr n, natExpr m]

We next consider the helper mkLambda to construct a simple function named cz
which takes any natural number and returns Nat.zero. The argument Binder-
Info.default for the constructor says that the argument is explicit.

def constZero : Expr :=
mkLambda `cz BinderInfo.default (mkConst ``Nat) (mkConst ``Nat.zero)

As you may have noticed, we didn’t show #eval outputs for the three last function.
That’s because, as you may have guessed, those resulting expressions can grow so
large that it’s hard to make sense of them.

In the next chapter we shall explore some functions that compute in the MetaM
monad, opening room for more powerful tricks involving expressions. And we will
start off by visiting reduce, a function that can simplify bigger expressions such as
the ones we’d get from using the functions above.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

11

MetaM

Smart constructors for expressions

The MetaM monad provides even more smart constructors to help us build expres-
sions. The API also contains functions that help us explore certain expressions
more easily. In this chapter we will visit some of those.

But first, let’s recap the definition of natExpr

import Lean

open Lean Meta

def natExpr : Nat → Expr
| 0 => mkConst ``Nat.zero
| n + 1 => mkApp (mkConst ``Nat.succ) (natExpr n)

#eval natExpr 1
-- Lean.Expr.app
-- (Lean.Expr.const `Nat.succ [] (Expr.mkData 3403344051 (bi := Lean.BinderInfo.default)))
-- (Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default)))
-- (Expr.mkData 3354277877 (approxDepth := 1) (bi := Lean.BinderInfo.default))

That’s already a long expression for the natural number 1! Let’s see what reduce
: Expr → MetaM Expr can do about it

#eval reduce $ natExpr 1
-- Lean.Expr.lit (Lean.Literal.natVal 1) (Expr.mkData 4289331193 (bi := Lean.BinderInfo.default))

The following example would yield an even longer expression, but reduce can clean
it up for us:

def sumExprM (n m : Nat) : MetaM Expr := do
reduce $ mkAppN (mkConst ``Nat.add) #[natExpr n, natExpr m]

12

Metaprogramming in Lean 4

#eval sumExprM 2 3 --Lean.Expr.lit (Lean.Literal.natVal 5) (Expr.mkData 1441793 (bi := Lean.BinderInfo.default))

We next construct a λ-expression for the function double : Nat → Nat given by dou-
ble n = n + n. To construct such an expression, we introduce a free variable n, we
define an expression in terms of this variable, and we construct the λ-expression.

The variable is introduced by passing the code using it as a continuation to with-
LocalDecl. The arguments of withLocalDecl are: * The name of the variable * The
binder that determines whether it is explicit or not * The type of the variable * The
function that turns an expression into something else (in our case, into another
expression). This function does not need to be pure.

The λ-expression is constructed using mkLambdaFVars, with the first argument being
an array of free variables (just one in this case) with respect to which we take λ.
The second argument is the body of the λ-expression.

def doubleM : MetaM Expr :=
withLocalDecl `n BinderInfo.default (mkConst ``Nat)
fun n : Expr => mkLambdaFVars #[n] $ mkAppN (mkConst ``Nat.add) #[n, n]

Let’s check if doubleM can indeed compute the expression for n + n

def appDoubleM (n : Nat) : MetaM Expr := do
reduce $ mkApp (← doubleM) (natExpr n)

#eval appDoubleM 3 -- Lean.Expr.lit (Lean.Literal.natVal 6) (Expr.mkData 393219 (bi := Lean.BinderInfo.default))

A powerful feature of lean is its unifier. There is an easy way to use this while
meta-programming, namely the method mkAppM (and a similar method mkAppM').
For example, we can construct an expression for the length of a list using mkAppM.
Recall that List.length has an implicit parameter α : Type u. This is deduced by
unification, as are universe levels.

def lenExprM (list: Expr) : MetaM Expr := do
reduce $ ← mkAppM ``List.length #[list]

We test the unification in this definition.

def egList := [1, 3, 7, 8]

def egLenM : MetaM Expr :=
lenExprM (mkConst ``egList)

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

13

Metaprogramming in Lean 4

#eval egLenM -- Lean.Expr.lit (Lean.Literal.natVal 4) (Expr.mkData 2490367 (bi := Lean.BinderInfo.default))

Analogous to the construction of λ-expressions, we can construct ∀-expressions
(i.e., Π-expressions) for types. We simply replace mkLambdaFVars with mkForallF-
Vars.

A special case of Π-types are function types A → B. These can be constructed us-
ing the function mkArrow. Another very useful meta-level function is mkEq, which
constructs equalities.

We illustrate all these, as well as the construction of a λ-expression, by constructing
the proposition ∀ n: Nat, f n = f (n + 1) as a function of f. Formally this is λ
f, ∀ n, f n = f (n + 1). We break this into many steps to illustrate the different
ingredients.

First we build the expression for our proposition:

def propM : MetaM Expr := do
let funcType ← mkArrow (mkConst ``Nat) (mkConst ``Nat)
withLocalDecl `f BinderInfo.default funcType fun f => do
let feqn ← withLocalDecl `n BinderInfo.default (mkConst ``Nat) fun n => do
let lhs := mkApp f n
let rhs := mkApp f (← mkAppM ``Nat.succ #[n])
let eqn ← mkEq lhs rhs
mkForallFVars #[n] eqn

mkLambdaFVars #[f] feqn

Now let’s elaborate the expression into a term so we can see the result of what we
did more easily. This will be further explored in the next chapter

elab "myProp" : term => propM

#check myProp -- fun f => ∀ (n : Nat), f n = f (Nat.succ n) : (Nat → Nat) → Prop
#reduce myProp -- fun f => ∀ (n : Nat), f n = f (Nat.succ n)
#reduce myProp Nat.succ -- ∀ (n : Nat), Nat.succ n = Nat.succ (Nat.succ n)

Meta variables

Meta-variables are variables that can be created and assigned to only at the meta
level, and not the object/term level. They are used principally as placeholders,

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

14

Metaprogramming in Lean 4

especially for goals. They can be assigned expressions in terms of other meta
variables. However, before being assigned to a pure (i.e., not meta) definition, the
assignments should be resolvable to a value not involving meta-variables.

One way to create a meta-variable representing an expression is to use the mk-
FreshExprMVar function. This function creates a meta-variable that can be assigned
an expression. One can optionally specify a type for the meta-variable. In the ex-
ample below, we create three meta-variables, mvar1, mvar2, and mvar3, with mvar1
and mvar3 assigned type Nat and mvar2 assigned the type Nat → Nat.

We assign expressions to the meta-variables using the assignExprMVar func-
tion. Like many functions dealing with meta-variables, this takes the id of the
meta-variable as an argument. Below we assign to mvar1 the result of function
application of mvar2 to mvar3. We then assign to mvar2 the constant expression
Nat.succ and to mvar3 the constant expression Nat.zero. Clearly this means
we have assigned Nat.succ (Nat.zero), i.e., 1 to mvar1. We return mvar1 in
the function metaOneM. We can see, using an elaborator, that indeed when the
expression metaOneM is assigned to a term, the result is 1.

def oneMetaVar : MetaM Expr := do
let zero := mkConst ``Nat.zero
let mvar1 ← mkFreshExprMVar (some (mkConst ``Nat))
let mvar2 ← mkFreshExprMVar (some (mkConst ``Nat))
let funcType ← mkArrow (mkConst ``Nat) (mkConst ``Nat)
let mvar3 ← mkFreshExprMVar (some funcType)
IO.println "the initial state of each metavariable:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
assignExprMVar mvar1.mvarId! (mkApp mvar3 mvar2)
IO.println "after turning `mvar1` into an application:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
assignExprMVar mvar2.mvarId! zero
IO.println "after turning the application argument into `Nat.zero`:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

15

Metaprogramming in Lean 4

IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
assignExprMVar mvar3.mvarId! (mkConst ``Nat.succ)
IO.println "after turning the application function into `Nat.succ`:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
return mvar1

elab "one!" : term => oneMetaVar

#eval one! -- 1
-- the initial state of each metavariable:
-- ?_uniq.3411
-- ?_uniq.3412
-- ?_uniq.3413
-- --------------------------------
-- after turning `mvar1` into an application:
-- ?_uniq.3413 ?_uniq.3412
-- ?_uniq.3412
-- ?_uniq.3413
-- --------------------------------
-- after turning the application argument into `Nat.zero`:
-- ?_uniq.3413 Nat.zero
-- Nat.zero
-- ?_uniq.3413
-- --------------------------------
-- after turning the application function into `Nat.succ`:
-- Nat.succ Nat.zero
-- Nat.zero
-- Nat.succ
-- --------------------------------

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

16

Metaprogramming in Lean 4

Telescopes

Before going further, let’s take a step back and think about the Expr.lam construc-
tor:

Expr.lam : Name → Expr → Expr → Data → Expr

The first Expr is the type of the function’s input and the second is its body. Then
we ask ourselves: how do we build a function with multiple input variables? Well,
we use the same constructor multiple times, one for each input variable.

As an example, let’s see an approximation of how we’d build the function fun (x :
Nat) (y : Nat) => x + y:

Expr.lam `x (mkConst ``Nat) (Expr.lam `y (mkConst ``Nat) b) d') d

It’s done by nesting a new Expr.lam as the body of another Expr.lam. Thus, if we
wanted to, say, perform a computation that involves all the input types of a function
as well as its body, we would have to unfold the expression recursively until the
last nested Expr.lam just to gather everything we need to do what we want. And
that’s when lambdaTelescope comes into play.

def lambdaTelescope (e : Expr) (k : Array Expr → Expr → m α) : m α

It makes it easier for us to do our computation with the data that we need. All we
need to do is provide a k function, whose first argument is an array of input types
and the second argument is the function body.

There are multiple telescopes in the API and we don’t intend to be exhaustive here.
Something to note is that m is not necessarily the MetaMmonad, but we are covering
this subject here because telescopes are defined in Lean.Meta and also because
we are already in MetaM when we want to use more powerful tools to deal with
expressions.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

17

Syntax

This chapter is concerned with the means to declare and operate on syntax in Lean.
Since there are a multitude of ways to operate on it, we will not go into great detail
about this yet and postpone quite a bit of this to later chapters.

Declaring Syntax

Declaration helpers

Some readers might be familiar with the infix or even the notation commands,
for those that are not here is a brief recap:

import Lean

-- XOR, denoted \oplus
infixl:60 " ⊕ " => fun l r => (!l && r) || (l && !r)

#eval true ⊕ true -- false
#eval true ⊕ false -- true
#eval false ⊕ true -- true
#eval false ⊕ false -- false

-- with `notation`, "left XOR"
notation:10 l:10 " LXOR " r:11 => (!l && r)

#eval true LXOR true -- false
#eval true LXOR false -- false
#eval false LXOR true -- true
#eval false LXOR false -- false

As we can see the infixl command allows us to declare a notation for a binary
operation that is infix, meaning that the operator is in between the operands (as

18

Metaprogramming in Lean 4

opposed to e.g. before which would be done using the prefix command). The l
at the end of infixl means that the notation is left associative so a ⊕ b ⊕ c gets
parsed as (a ⊕ b) ⊕ c as opposed to a ⊕ (b ⊕ c) which would be achieved by
infixr. On the right hand side it expects a function that operates on these two
parameters and returns some value. The notation command on the other hand
allows us some more freedom, we can just “mention” the parameters right in the
syntax definition and operate on them on the right hand side. It gets even better
though, we can in theory create syntax with 0 up to as many parameters as we
wish using the notation command, it is hence also often referred to as “mixfix”
notation.

The three unintuitive parts about these two are: - The fact that we are leaving
spaces around our operators: ” ⊕ “,” XOR “. This is so that, when Lean pretty
prints our syntax later on, it also uses spaces around the operators, otherwise the
syntax would just be presented as l⊕r as opposed to l ⊕ r. - The 60 and 10 right
after the respective commands – these denote the operator precedence, meaning
how strong they bind to their arguments, let’s see this in action

#eval true ⊕ false LXOR false -- false
#eval (true ⊕ false) LXOR false -- false
#eval true ⊕ (false LXOR false) -- true

As you can see the Lean interpreter analyzed the first term without parentheses
like the second instead of the third one. This is because the ⊕ notation has higher
precedence than LXOR (60 > 10 after all) and is thus evaluated before it. This is
also how you might implement rules like * being evaluated before +.

Lastly at the notation example there are also these :precedence bindings at the
arguments: l:10 and r:11. This conveys that the left argument must have prece-
dence at least 10 or greater, and the right argument must have precedence at 11
or greater. This forces left associativity like infixl above. To understand this, let’s
compare two hypothetical parses:

-- a LXOR b LXOR c
(a:10 LXOR b:11):10 LXOR c
a LXOR (b:10 LXOR c:11):10

In the parse tree of (a:10 LXOR b:11):10 LXOR c, we see that the right argument
(b LXOR c) is given the precedence 10, because a rule is always given the lowest
precedence of any of its subrules. However, the rule for LXOR expects the right
argument to have a precedence of at least 11, as witnessed by the r:11 at the

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

19

Metaprogramming in Lean 4

right-hand-side of notation:10 l:10 " LXOR " r:11. Thus this rule ensures that
LXOR is left associative.

Can you make it right associative?

Free form syntax declarations

With the above infix and notation commands you can get quite far with declaring
ordinary mathematical syntax already. Lean does however allow you to introduce
arbitrarily complex syntax as well. This is done using two main commands syntax
and declare_syntax_cat. A syntax command allows you add a new syntax rule to
an already existing, so called, syntax category. Themost common syntax categories
are: - term, this category will be discussed in detail in the elaboration chapter, for
now you can think of it as “the syntax of everything that has a value” - command, this
is the category for top level commands like #check, def etc. - TODO: …

Let’s see this in action:

syntax "MyTerm" : term

We can now write MyTerm in place of things like 1 + 1 and it will be syntactically
valid, this does not mean the code will compile yet, it just means that the Lean
parser can understand it:

def Playground1.test := MyTerm
-- elaboration function for 'termMyTerm' has not been implemented
-- MyTerm

Implementing this so called “elaboration function”, which will actually give mean-
ing to this syntax, is topic of the elaboration and macro chapter. An example of
one we have already seen however would be the notation and infix command.

We can of course also involve other syntax into our own declarations in order to
build up syntax trees, for example we could try to build our own little boolean
expression language:

namespace Playground2

-- The scoped modifier makes sure the syntax declarations remain in this `namespace`
-- because we will keep modifying this along the chapter
scoped syntax "⊥" : term -- ⊥ for false
scoped syntax "⊤" : term -- ⊤ for true

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

20

Metaprogramming in Lean 4

scoped syntax:40 term " OR " term : term
scoped syntax:50 term " AND " term : term
#check ⊥ OR (⊤ AND ⊥) -- elaboration function hasn't been implemented but parsing passes

end Playground2

While this does work, it allows arbitrary terms to the left and right of our AND and
OR operation. If we want to write a mini language that only accepts our boolean
language on a syntax level we will have to declare our own syntax category on top.
This is done using the declare_syntax_cat command:

declare_syntax_cat boolean_expr
syntax "⊥" : boolean_expr -- ⊥ for false
syntax "⊤" : boolean_expr -- ⊤ for true
syntax boolean_expr " OR " boolean_expr : boolean_expr
syntax boolean_expr " AND " boolean_expr : boolean_expr

Now that we are working in our own syntax category, we are completely discon-
nected from the rest of the system. And these cannot be used in place of terms
anymore:

#check ⊥ AND ⊤ -- expected term

In order to integrate our syntax category into the rest of the system we will have
to extend an already existing one with new syntax, in this case we will re-embed it
into the term category:

syntax "[Bool|" boolean_expr "]" : term
#check [Bool| ⊥ AND ⊤] -- elaboration function hasn't been implemented but parsing passes

Syntax combinators

In order to declare more complex syntax it is often very desirable to have some
basic operations on syntax already built-in, these include: - helper parsers without
syntax categories (i.e. not extendable) - alternatives - repetetive parts - optional
parts While all of these do have an encoding based on syntax categories this can
make things quite ugly at times so Lean provides a way to do all of these.

In order to see all of these in action briefly we will define a simple binary expression
syntax. First things first, declaring named parsers that don’t belong to a syntax
category, this is quite similar to ordinary defs:

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

21

Metaprogramming in Lean 4

syntax binOne := "O"
syntax binZero := "Z"

These named parsers can be used in the same positions as syntax categories from
above, their only difference to them is, that they are not extensible. There does also
exist a number of built-in named parsers that are generally useful, most notably:
- str for string literals - num for number literals - ident for identifiers - … TODO:
better list or link to compiler docs

Next up we want to declare a parser that understands digits, a binary digit is either
0 or 1 so we can write:

syntax binDigit := binZero <|> binOne

Where the <|> operator implements the “accept the left or the right” behaviour.
We can also chain them to achieve parsers that accept arbitrarily many, arbitrarly
complex other ones. Now we will define the concept of a binary number, usually
this would be written as digits directly after each other but we will instead use
comma separated ones to showcase the repetetion feature:

-- the "+" denotes "one or many", in order to achieve "zero or many" use "*" instead
-- the "," denotes the separator between the `binDigit`s, if left out the default separator is a space
syntax binNumber := binDigit,+

Since we can just use named parsers in place of syntax categories, we can now
easily add this to the term category:

syntax "bin(" binNumber ")" : term
#check bin(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes
#check bin() -- fails to parse because `binNumber` is "one or many": expected 'O' or 'Z'

syntax binNumber' := binDigit,* -- note the *
syntax "emptyBin(" binNumber' ")" : term
#check emptyBin() -- elaboration function hasn't been implemented but parsing passes

Note that nothing is limiting us to only using one syntax combinator per parser, we
could also have written all of this inline:

syntax "binCompact(" ("Z" <|> "O"),+ ")" : term
#check binCompact(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes

As a final feature, lets add an optional string comment that explains the binary
literal being declared:

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

22

Metaprogramming in Lean 4

-- The (...)? syntax means that the part in parentheses optional
syntax "binDoc(" (str ";")? binNumber ")" : term
#check binDoc(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes
#check binDoc("mycomment"; Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes

Operating on Syntax

As explained above we will not go into detail in this chapter on how to teach Lean
about themeaning youwant to give your syntax. Wewill however take a look at how
to write functions that operate on it. Like all things in Lean, syntax is represented
by the inductive type Lean.Syntax, on which we can operate. It does contain quite
some information, but most of what we are interested in, we can condense in the
following simplified view:

namespace Playground2

inductive Syntax where
| missing : Syntax
| node (kind : Lean.SyntaxNodeKind) (args : Array Syntax) : Syntax
| atom : String -> Syntax
| ident : Lean.Name -> Syntax

end Playground2

Lets go through the definition one constructor at a time: - missing is used when
there is something the Lean compiler cannot parse, it is what allows Lean to have
a syntax error in one part of the file but recover from it and understand the rest
of it. This also means we pretty much don’t care about this constructor. - node is,
as the name suggests a node in the syntax tree, it has a so called kind : SyntaxN-
odeKind where SyntaxNodeKind is just a Lean.Name. Basically each of our syntax
declarations receives an automatically generated SyntaxNodeKind (we can also ex-
plicitly specify the name with syntax (name := foo) ... : cat) so we can tell
Lean “this function is responsible for processing this specific syntax construct”.
Furthermore, like all nodes in a tree, it has children, in this case in the form of an
Array Syntax. - atom represents (with the exception of one) every syntax object
that is at the bottom of the hierarchy. For example, our operators ⊕ and LXOR from
above will be represented as atoms. - ident is the mentioned exception to this rule.
The difference between ident and atom is also quite obvious: an identifier has a

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

23

Metaprogramming in Lean 4

Lean.Name instead of a String that represents is. Why a Lean.Name is not just a
String is related to a concept called macro hygiene that will be discussed in detail
in the macro chapter. For now, you can consider them basically equivalent.

Constructing new Syntax

Now that we know how syntax is represented in Lean we could of course write pro-
grams that generate all of these inductive trees by hand which would be incredibly
tedious and is something we most definitely want to avoid. Luckily for us there is
quite an extensive API hidden inside the Lean.Syntax namespace we can explore:

open Lean
#check Syntax -- Syntax. autocomplete

The interesting functions for creating Syntax are the Syntax.mk ones, they allow
us to create both very basic Syntax objects like idents but also more complex ones
like Syntax.mkApp which we can use to create the Syntax object that would amount
to applying the function from the first argument to the argument list (all given as
Syntax) in the second one. Let’s see a few examples:

-- Name literals are written with this little ` infront of the name
#eval Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"] -- is the syntax of `Nat.add 1 1`
#eval mkNode `«term_+_» #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"] -- is the syntax for `1 + 1`

-- note that the `«term_+_» is the auto generated SyntaxNodeKind for the + syntax

If you don’t like this way of creating Syntax at all you are not alone. However, there
are a few things involved with the machinery of doing this in a pretty and correct
(the machinery is mostly about the correct part) way which will be explained in the
macro chapter.

Matching on Syntax

Just like constructing Syntax is an important topic, especially with macros, match-
ing on syntax is equally (or in fact even more) interesting. Luckily we don’t have
to match on the inductive type itself either, we can instead use so called syntax
patterns. They are quite simple, their syntax is just ‘(the syntax I want to match
on). Let’s see one in action:

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

24

Metaprogramming in Lean 4

def isAdd11 : Syntax → Bool
| `(Nat.add 1 1) => true
| _ => false

#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"]) -- true
#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) -- false

The next level with matches is to capture variables from the input instead of just
matching on literals, this is done with a slightly fancier looking syntax:

def isAdd : Syntax → Option (Syntax × Syntax)
| `(Nat.add $x $y) => some (x, y)
| _ => none

#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"]) -- some ...
#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) -- some ...
#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo]) -- none

Note that x and y in this example are of type Syntax not Nat. This is simply because
we are still at the Syntax level: the concept of a type doesn’t quite exist yet. What
we can however do is limit the parsers/categories we want to match on, for example
if we only want to match on number literals in order to implement some constant
folding:

def isLitAdd : Syntax → Option Nat
| `(Nat.add $x:num $y:num) => some (x.toNat + y.toNat)
| _ => none

#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"]) -- some 2
#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) -- none

As you can see in the code even though we explicitly matched on the num parser
we still have to explicitly convert x and y to Nat because again, we are on Syntax
level, types do not exist.

One last important note about the matching on syntax: In this basic form it only
works on syntax from the term category. If you want to use it to match on your own
syntax categories you will have to use `(category| ...).

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

25

Metaprogramming in Lean 4

Mini Project

As a final mini project for this chapter wewill declare the syntax of amini arithmetic
expression language and a function of type Syntax → Nat to evaluate it. We will
see more about some of the concepts presented below in future chapters.

declare_syntax_cat arith

syntax num : arith
syntax arith "-" arith : arith
syntax arith "+" arith : arith
syntax "(" arith ")" : arith

partial def denoteArith : Syntax → Nat
| `(arith| $x:num) => x.toNat
| `(arith| $x:arith + $y:arith) => denoteArith x + denoteArith y
| `(arith| $x:arith - $y:arith) => denoteArith x - denoteArith y
| `(arith| ($x:arith)) => denoteArith x
| _ => 0

-- You can ignore Elab.TermElabM, what is important for us is that it allows
-- us to use the ``(arith| (12 + 3) - 4)` notation to construct `Syntax`
-- instead of only being able to match on it like this.
def test : Elab.TermElabM Nat := do
let stx ← `(arith| (12 + 3) - 4)
pure (denoteArith stx)

#eval test -- 11

Feel free to play around with this example and extend it in whatever way you want
to. The next chapters will mostly be about functions that operate on Syntax in some
way.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

26

Macros

What is a macro

Macros in Lean are Syntax → MacroM Syntax functions. MacroM is the macro monad
which allows macros to have some static guarantees we will discuss in the next
section, you can mostly ignore it for now.

Macros are registered as handlers for a specific syntax declaration using the macro
attribute. The compiler will take care of applying these function to the syntax for
us before performing actual analysis of the input. This means that the only thing
we have to do is declare our syntax with a specific name and bind a function of
type Lean.Macro to it. Let’s try to reproduce the LXOR notation from the Syntax
chapter:

import Lean

open Lean

syntax:10 (name := lxor) term:10 " LXOR " term:11 : term

@[macro lxor] def lxorImpl : Macro
| `($l:term LXOR $r:term) => `(!$l && $r) -- we can use the quoting mechanism to create `Syntax` in macros
| _ => Macro.throwUnsupported

#eval true LXOR true -- false
#eval true LXOR false -- false
#eval false LXOR true -- true
#eval false LXOR false -- false

That was quite easy! The Macro.throwUnsupported function can be used by a macro
to indicate that “it doesn’t feel responsible for this syntax”. In this case it’s merely
used to fill a wildcard pattern that should never be reached anyways.

27

Metaprogramming in Lean 4

However we can in fact register multiple macros for the same syntax this way
if we desire, they will be tried one after another (the later registered ones have
higher priority) – is “higher” correct? until one throws either a real error using
Macro.throwError or succeeds, that is it does not Macro.throwUnsupported. Let’s
see this in action:

@[macro lxor] def lxorImpl2 : Macro
-- special case that changes behaviour of the case where the left and
-- right hand side are these specific identifiers
| `(true LXOR true) => `(true)
| _ => Macro.throwUnsupported

#eval true LXOR true -- true, handled by new macro
#eval true LXOR false -- false, still handled by the old

This capability is obviously very powerful! It should not be used lightly and without
careful thinking since it can introduce weird behaviour while writing code later on.
The following example illustrates this weird behaviour:

#eval true LXOR true -- true, handled by new macro

def foo := true
#eval foo LXOR foo -- false, handled by old macro, after all the identifiers have a different name

Without knowing exactly how this macro is implemented this behaviour will be
very confusing to whoever might be debugging an issue based on this. The rule
of thumb for when to use a macro vs. other mechanisms like elaboration is that
as soon as you are building real logic like in the 2nd macro above, it should most
likely not be a macro but an elaborator (explained in the elaboration chapter). This
means ideally we want to use macros for simple syntax to syntax translations, that
a human could easily write out themselves as well but is too lazy to.

Simplifying macro declaration

Now that we know the basics of what a macro is and how to register it we can take
a look at slightly more automated ways to do this (in fact all of the ways about to
be presented are implemented as macros themselves).

First things first there is macro_rules which basically desugars to functions like
the ones we wrote above, for example:

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

28

Metaprogramming in Lean 4

syntax:10 term:10 " RXOR " term:11 : term

macro_rules
| `($l:term RXOR $r:term) => `($l && !$r)

As you can see, it figures out lot’s of things on its own for us: - the name of the
syntax declaration - the macro attribute registration - the throwUnsupported wild-
card

apart from this it just works like a function that is using pattern matching syntax,
we can in theory encode arbitrarily complex macro functions on the right hand
side.

If this is still not short enough for you, there is a next step using the macromacro:

macro l:term:10 " ⊕ " r:term:11 : term => `((!$l && $r) || ($l && !$r))

#eval true ⊕ true -- false
#eval true ⊕ false -- true
#eval false ⊕ true -- true
#eval false ⊕ false -- false

As you can see, macro is quite close to notation already: - it performed syntax
declaration for us - it automatically wrote a macro_rules style function to match on
it

The are of course differences as well: - notation is limited to the term syntax cate-
gory - notation cannot have arbitrary macro code on the right hand side

Hygiene issues and how to solve them

If you are familiar with macro systems in other languages like C you probably know
about so called macro hygiene issues already. A hygiene issue is when a macro
introduces an identifier that collides with an identifier from some syntax that it is
including. For example:

-- Applying this macro produces a function that binds a new identifier `x`.
macro "const" e:term : term => `(fun x => $e)

-- But `x` can also be defined by a user
def x : Nat := 42

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

29

Metaprogramming in Lean 4

-- Which `x` should be used by the compiler in place of `$e`?
#eval (const x) 10 -- 42

Given the fact that macros perform only syntactic translations one might expect
the above eval to return 10 instead of 42: after all, the resulting syntax should be
(fun x => x) 10. While this was of course not the intention of the author, this
is what would happen in more primitive macro systems like the one of C. So how
does Lean avoid these hygiene issues? You can read about this in detail in the
excellent Beyond Notations paper which discusses the idea and implementation in
Lean in detail. Wewill merely give an overview of the topic, since the details are not
that interesting for practical uses. The idea described in Beyond Notations comes
down to a concept called “macro scopes”. Whenever a newmacro is invoked, a new
macro scope (basically a unique number) is added to a list of all the macro scopes
that are active right now. When the current macro introduces a new identifier what
is actually getting added is an identifier of the form:

<actual name>._@.(<module_name>.<scopes>)*.<module_name>._hyg.<scopes>

For example, if the module name is Init.Data.List.Basic, the name is foo.bla,
and macros scopes are [2, 5] we get:

foo.bla._@.Init.Data.List.Basic._hyg.2.5

Since macro scopes are unique numbers the list of macro scopes appended in the
end of the name will always be unique across all macro invocations, hence macro
hygiene issues like the ones above are not possible.

If you are wondering why there is more than just the macro scopes to this
name generation, that is because we may have to combine scopes from different
files/modules. The main module being processed is always the right most one.
This situation may happen when we execute a macro generated in a file imported
in the current file.

foo.bla._@.Init.Data.List.Basic.2.1.Init.Lean.Expr_hyg.4

The delimiter _hyg at the end is used just to improve performance of the function
Lean.Name.hasMacroScopes – the format could also work without it.

This was a lot of technical details. You do not have to understand them in order to
use macros, if you want you can just keep in mind that Lean will not allow name
clashes like the one in the const example.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

30

https://lmcs.episciences.org/9362/pdf

Metaprogramming in Lean 4

MonadQuotation and MonadRef

This macro hygiene mechanism is the reason that while we are able to use pattern
matching on syntax with `(syntax) we cannot just create Syntax with the same
syntax in pure functions: someone has to keep track of macro scopes for us. In
this case, this is done by the MacroM monad, but it can be done by any monad that
implements Lean.MonadQuotation. For this reason, it’s worth to take a brief look
at it:

namespace Playground

class MonadRef (m : Type → Type) where
getRef : m Syntax
withRef {α} : Syntax → m α → m α

class MonadQuotation (m : Type → Type) extends MonadRef m where
getCurrMacroScope : m MacroScope
getMainModule : m Name
withFreshMacroScope {α : Type} : m α → m α

end Playground

Since MonadQuotation is based on MonadRef, let’s take a look at MonadRef first. The
idea here is quite simple: MonadRef is meant to be seen as an extension to the Monad
typeclass which - gives us a reference to a Syntax value with getRef and - evaluates
a function of type Syntax → m α to m α by the return value of getRef to this Syntax
parameter and evaluating the m α parameter with that new state.

On it’s own MonadRef isn’t exactly interesting, but once it is combined with Mon-
adQuotation it makes sense.

As you can see MonadQuotation extends MonadRef and adds 3 new functions: -
getCurrMacroScope which obtains the latest MacroScope that was created - get-
MainModule which (obviously) obtains the name of the main module, both of these
are used to create these hygienic identifiers explained above - withFreshMacro-
Scope which will compute the next macro scope and run some computation m α
that performs syntax quotation with this new macro scope in order to avoid name
clashes. While this is mostly meant to be used internally whenever a new macro
invocation happens, it can sometimes make sense to use this in our own macros,
for example when we are generating some syntax block repeatedly and want to

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

31

Metaprogramming in Lean 4

avoid name clashes.

How MonadRef comes into play here is that Lean requires a way to indicate errors
at certain positions to the user. One thing that wasn’t introduced in the Syntax
chapter is that values of type Syntax actually carry their position in the file around
as well. When an error is detected, it is usually bound to a Syntax value which
tells Lean where to indicate the error in the file. What Lean will do when using
withFreshMacroScope is to apply the position of the result of getRef to each intro-
duced symbol, which then results in better error positions than not applying any
position.

To see error positioning in action, we can write a little macro that makes use of
it:

syntax "error_position" ident : term

macro_rules
| `(error_position all) => Macro.throwError "Ahhh"
-- the `%$tk` syntax gives us the Syntax of the thing before the %,
-- in this case `error_position`, giving it the name `tk`
| `(error_position%$tk first) => withRef tk (Macro.throwError "Ahhh")

#eval error_position all -- the error is indicated at `error_position all`
#eval error_position first -- the error is only indicated at `error_position`

Obviously controlling the positions of errors in this way is quite important for a
good user experience.

Mini project

As a final mini project for this section we will re-build the arithmetic DSL from the
syntax chapter in a slightly more advanced way, using a macro this time so we can
actually fully integrate it into the Lean syntax.

declare_syntax_cat arith

syntax num : arith
syntax arith "-" arith : arith
syntax arith "+" arith : arith
syntax "(" arith ")" : arith

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

32

Metaprogramming in Lean 4

syntax "[Arith|" arith "]" : term

macro_rules
| `([Arith| $x:num]) => `($x)
| `([Arith| $x:arith + $y:arith]) => `([Arith| $x] + [Arith| $y]) -- recursive macros are possible
| `([Arith| $x:arith - $y:arith]) => `([Arith| $x] - [Arith| $y])
| `([Arith| ($x:arith)]) => `([Arith| $x])

#eval [Arith| (12 + 3) - 4] -- 11

Again feel free to play around with it. If you want to build more complex things,
like expressions with variables, maybe consider building an inductive type using
macros instead. Once you got your arithmetic expression term as an inductive,
you could then write a function that takes some form of variable assignment and
evaluates the given expression for this assignment. You could also try to embed
arbitrary terms into your arith language using some special syntax or whatever
else comes to your mind.

Reading further

If you want to know more about macros you can read: - the API docs: TODO link -
the source code: the lower parts of Init.Prelude as you can see they are declared
quite early in Lean because of their importance of to building up syntax - the afore-
mentioned Beyond Notations paper

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

33

https://github.com/leanprover/lean4/blob/master/src/Init/Prelude.lean
https://lmcs.episciences.org/9362/pdf

Elaboration

The elaborator is the component in charge of turning the user facing Syntax into
something with which the rest of the compiler can work. Most of the time, this
means translating Syntax into Exprs but there are also other use cases such as
#check or #eval. Hence the elaborator is quite a large piece of code, it lives here.

Command elaboration

A command is the highest level of Syntax, a Lean file is made up of a list of com-
mands. The most commonly used commands are declarations, for example: - def -
inductive - structure

but there are also other ones, most notably #check, #eval and friends. All com-
mands live in the command syntax category so in order to declare custom commands,
their syntax has to be registered in that category.

Giving meaning to commands

The next step is giving some semantics to the syntax. With commands, this is done
by registering a so called command elaborator.

Command elaborators have type CommandElab which is an alias for: Syntax → Com-
mandElabM Unit. What they do, is take the Syntax that represents whatever the user
wants to call the command and produce some sort of side effect on the CommandE-
labMmonad, after all the return value is always Unit. The CommandElabMmonad has
4 main kinds of side effects: 1. Logging messages to the user via the Monad exten-
sions MonadLog and AddMessageContext, like #check. This is done via functions that
can be found in Lean.Elab.Log, the most notable ones being: logInfo, logWarning
and logError. 2. Interacting with the Environment via the Monad extension Mon-
adEnv. This is the place where all of the relevant information for the compiler is

34

https://github.com/leanprover/lean4/blob/master/src/Lean/Elab

Metaprogramming in Lean 4

stored, all known declarations, their types, doc-strings, values etc. The current en-
vironment can be obtained via getEnv and set via setEnv once it has been modified.
Note that quite often wrappers around setEnv like addDecl are the correct way to
add information to the Environment. 3. Performing IO, CommandElabM is capable
of running any IO operation. For example reading from files and based on their
contents perform declarations. 4. Throwing errors, since it can run any kind of IO,
it is only natural that it can throw errors via throwError.

Furthermore there are a bunch of other Monad extensions that are supported by
CommandElabM: - MonadRef and MonadQuotation for Syntax quotations like in macros
- MonadOptions to interact with the options framework - MonadTrace for debug trace
information - TODO: There are a few others though I’m not sure whether they are
relevant, see the instance in Lean.Elab.Command

Command elaboration

Now that we understand the type of command elaborators let’s take a brief look
at how the elaboration process actually works: 1. Check whether any macros can
be applied to the current Syntax. If there is a macro that does apply and does
not throw an error the resulting Syntax is recursively elaborated as a command
again. 2. If no macro can be applied, we search for all CommandElabs that have
been registered for the SyntaxKind of the Syntax we are elaborating, using the
commandElabAttribute. 3. All of these CommandElab are then tried in order until one
of them does not throw an unsupportedSyntaxException, Lean’s way of indicating
that the elaborator “feels responsible” for this specific Syntax construct. Note that
it can still throw a regular error to indicate to the user that something is wrong. If
no responsible elaborator is found, then the command elaboration is aborted with
an unexpected syntax error message.

As you can see the general idea behind the procedure is quite similar to ordinary
macro expansion.

Making our own

Now that we know both what a CommandElab is and how they are used, we can
start looking into writing our own. The steps for this, as we learned above, are: 1.
Declaring the syntax 2. Declaring the elaborator 3. Registering the elaborator as
responsible for the syntax via commandElabAttribute

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

35

Metaprogramming in Lean 4

Let’s see how this is done:

import Lean

open Lean Elab Command Term Meta

syntax (name := mycommand1) "#mycommand1" : command -- declare the syntax

@[commandElab mycommand1]
def mycommand1Impl : CommandElab := fun stx => do -- declare and register the elaborator
logInfo "Hello World"

#mycommand1 -- Hello World

You might think that this is a little boiler-platey and it turns out the Lean devs did
as well so they added a macro for this!

elab "#mycommand2" : command =>
logInfo "Hello World"

#mycommand2 -- Hello World

Note that, due to the fact that command elaboration supports multiple registered
elaborators for the same syntax, we can in fact overload syntax, if we want to.

@[commandElab mycommand1]
def myNewImpl : CommandElab := fun stx => do
logInfo "new!"

#mycommand1 -- new!

Furthermore it is also possible to only overload parts of syntax by throwing an
unsupportedSyntaxException in the cases we want the default handler to deal with
it or just letting the elab command handle it.

In the following example, we are not extending the original #check syntax, but
adding a new SyntaxKind for this specific syntax construct. However, from the
point of view of the user, the effect is basically the same.

elab "#check" "mycheck" : command => do
logInfo "Got ya!"

This is actually extending the original #check

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

36

Metaprogramming in Lean 4

@[commandElab Lean.Parser.Command.check] def mySpecialCheck : CommandElab := fun stx => do
if let some str := stx[1].isStrLit? then
logInfo s!"Specially elaborated string literal!: {str} : String"

else
throwUnsupportedSyntax

#check mycheck -- Got ya!
#check "Hello" -- Specially elaborated string literal!: Hello : String
#check Nat.add -- Nat.add : Nat → Nat → Nat

Mini project

As a final mini project for this section let’s build a command elaborator that is actu-
ally useful. It will take a command and use the same mechanisms as elabCommand
(the entry point for command elaboration) to tell us which macros or elaborators
are relevant to the command we gave it.

We will not go through the effort of actually reimplementing elabCommand though

elab "#findCElab " c:command : command => do
let macroRes ← liftMacroM <| expandMacroImpl? (←getEnv) c
match macroRes with
| some (name, _) => logInfo s!"Next step is a macro: {name.toString}"
| none =>
let kind := c.getKind
let elabs := commandElabAttribute.getEntries (←getEnv) kind
match elabs with
| [] => logInfo s!"There is no elaborators for your syntax, looks like its bad :("
| _ => logInfo s!"Your syntax may be elaborated by: {elabs.map (fun el => el.declName.toString)}"

#findCElab def lala := 12 -- Your syntax may be elaborated by: [Lean.Elab.Command.elabDeclaration]
#findCElab abbrev lolo := 12 -- Your syntax may be elaborated by: [Lean.Elab.Command.elabDeclaration]
#findCElab #check foo -- even our own syntax!: Your syntax may be elaborated by: [mySpecialCheck, Lean.Elab.Command.elabCheck]
#findCElab open Hi -- Your syntax may be elaborated by: [Lean.Elab.Command.elabOpen]
#findCElab namespace Foo -- Your syntax may be elaborated by: [Lean.Elab.Command.elabNamespace]
#findCElab #findCElab open Bar -- even itself!: Your syntax may be elaborated by: [«_aux_lean_elaboration___elabRules_command#findCElab__1»]

TODO: Maybe we should also add a mini project that demonstrates a non # style
command aka a declaration, although nothing comes to mind right now. TODO:

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

37

Metaprogramming in Lean 4

Define a conjecture declaration, similar to lemma/theorem, except that it is auto-
matically sorried. The sorry could be a custom one, to reflect that the “conjecture”
might be expected to be true.

Term elaboration

A term is a Syntax object that represents some sort of Expr. Term elaborators
are the ones that do the work for most of the code we write. Most notably they
elaborate all the values of things like definitions, types (since these are also just
Expr) etc.

All terms live in the term syntax category (which we have seen in action in the
macro chapter already). So, in order to declare custom terms, their syntax needs
to be registered in that category.

Giving meaning to terms

As with command elaboration, the next step is giving some semantics to the syntax.
With terms, this is done by registering a so called term elaborator.

Term elaborators have type TermElab which is an alias for: Syntax → Option Expr
→ TermElabM Expr. This type is already quite different from command elaboration:
- As with command elaboration the Syntax is whatever the user used to create
this term - The Option Expr is the expected type of the term, since this cannot
always be known it is only an Option argument - Unlike command elaboration,
term elaboration is not only executed because of its side effects – the TermElabM
Expr return value does actually contain something of interest, namely, the Expr
that represents the Syntax object.

TermElabM is basically an upgrade of CommandElabM in every regard: it supports all
the capabilities we mentioned above, plus two more. The first one is quite simple:
On top of running IO code it is also capable of running MetaM code, so Exprs can be
constructed nicely. The second one is very specific to the term elaboration loop.

Term elaboration

The basic idea of term elaboration is the same as command elaboration: expand
macros and recurse or run term elaborators that have been registered for the Syn-

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

38

Metaprogramming in Lean 4

tax via the termElabAttribute (they might in turn run term elaboration) until we
are done. There is, however, one special action that a term elaborator can do
during its execution.

A term elaborator may throw Except.postpone. This indicates that the term elab-
orator requires more information to continue its work. In order to represent this
missing information, Lean uses so called synthetic meta variables. As you know
from before, metavariables are holes in Exprs that are waiting to be filled in. Syn-
thetic meta variables are different in that they have special methods that are used
to solve them, registered in SyntheticMVarKind. Right now, there are four of these:
- typeClass, the meta variable should be solved with typeclass synthesis - coe, the
meta variable should be solved via coercion (a special case of typeclass) - tac-
tic, the meta variable is a tactic term that should be solved by running a tactic -
postponed, the ones that are created at Except.postpone

Once such a synthetic meta variable is created, the next higher level term elabo-
rator will continue. At some point, execution of postponed meta variables will be
resumed by the term elaborator, in hopes that it can now complete its execution.
We can try to see this in action with the following example:

#check set_option trace.Elab.postpone true in List.foldr .add 0 [1,2,3] -- [Elab.postpone] .add : ?m.5695 → ?m.5696 → ?m.5696

What happened here is that the elaborator for function applications started at
List.foldr which is a generic function so it created meta variables for the implicit
type parameters. Then, it attempted to elaborate the first argument .add.

In case you don’t know how .name works, the basic idea is that quite often (like
in this case) Lean should be able to infer the output type (in this case Nat) of a
function (in this case Nat.add). In such cases, the .name feature will then simply
search for a function named name in the namespace Nat. This is especially useful
when you want to use constructors of a type without referring to its namespace or
opening it, but can also be used like above.

Now back to our example, while Lean does at this point already know that .add
needs to have type: ?m1 → ?m2 → ?m2 (where ?x is notation for a meta variable) the
elaborator for .add does need to know the actual value of ?m2 so the term elaborator
postpones execution (by internally creating a synthetic meta variable in place of
.add), the elaboration of the other two arguments then yields the fact that ?m2 has
to be Nat so once the .add elaborator is continued it can work with this information
to complete elaboration.

We can also easily provoke cases where this does not work out. For example:

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

39

Metaprogramming in Lean 4

#check set_option trace.Elab.postpone true in List.foldr .add
-- [Elab.postpone] .add : ?m.5808 → ?m.5809 → ?m.5809
-- invalid dotted identifier notation, expected type is not of the form (... → C ...) where C is a constant
-- ?m.5808 → ?m.5809 → ?m.5809

In this case .add first postponed its execution, then got called again but didn’t have
enough information to finish elaboration and thus failed.

Making our own

Adding new term elaborators works basically the same way as adding new com-
mand elaborators so we’ll only take a very brief look:

syntax (name := myterm1) "myterm 1" : term

def mytermValues := [1, 2]

@[termElab myterm1]
def myTerm1Impl : TermElab := fun stx type? =>
mkAppM ``List.get! #[mkConst ``mytermValues, mkNatLit 0] -- `MetaM` code

#eval myterm 1 -- 1

-- Also works with `elab`
elab "myterm 2" : term => do
mkAppM ``List.get! #[mkConst ``mytermValues, mkNatLit 1] -- `MetaM` code

#eval myterm 2 -- 2

Mini project

As a final mini project for this chapter we will recreate one of the most commonly
used Lean syntax sugars, the ⟨a,b,c⟩ notation as a short hand for single construc-
tor types:

-- slightly different notation so no ambiguity happens
syntax (name := myanon) "⟨⟨" term,* "⟩⟩" : term

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

40

Metaprogramming in Lean 4

def getCtors (typ : Name) : MetaM (List Name) := do
let env ← getEnv
match env.find? typ with
| some (ConstantInfo.inductInfo val) =>
pure val.ctors

| _ => pure []

@[termElab myanon]
def myanonImpl : TermElab := fun stx typ? => do
-- Attempt to postpone execution if the type is not known or is a meta variable.
-- Meta variables are used by things like the function elaborator to fill
-- out the values of implicit parameters when they haven't gained enough
-- information to figure them out yet.
-- Term elaborators can only postpone execution once, so the elaborator
-- doesn't end up in an infinite loop. Hence, we only try to postpone it,
-- otherwise we may cause an error.
tryPostponeIfNoneOrMVar typ?
-- If we haven't found the type after postponing just error
let some typ := typ? | throwError "expected type must be known"
if typ.isMVar then
throwError "expected type must be known"

let Expr.const base .. := typ.getAppFn | throwError s!"type is not of the expected form: {typ}"
let [ctor] ← getCtors base | throwError "type doesn't have exactly one constructor"
let args := stx[1].getSepArgs
let stx ← `($(mkIdent ctor) $args*) -- syntax quotations
elabTerm stx typ -- call term elaboration recursively

#check (⟨⟨1, sorry⟩⟩ : Fin 12) -- { val := 1, isLt := (_ : 1 < 12) } : Fin 12
#check ⟨⟨1, sorry⟩⟩ -- expected type must be known
#check (⟨⟨0⟩⟩ : Nat) -- type doesn't have exactly one constructor
#check (⟨⟨⟩⟩ : Nat → Nat) -- type is not of the expected form: Nat -> Nat

As a final note, we can shorten the postponing act by using an additional syntax
sugar of the elab syntax instead:

-- This `t` syntax will effectively perform the first two lines of `myanonImpl`
elab "⟨⟨" args:term,* "⟩⟩" : term <= t => do
sorry

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

41

Embedding DSLs By Elaboration

In this chapter we will learn how to use elaboration to build a DSL. We will not
explore the full power of MetaM, and simply gesture at how to get access to this
low-level machinery.

More precisely, we shall enable Lean to understand the syntax of IMP, which is a
simple imperative language, often used for teaching operational and denotational
semantics.

We are not going to define everything with the same encoding that the book does.
For instance, the book defines arithmetic expressions and boolean expressions. We,
will take a different path and just define generic expressions that take unary or
binary operators.

This means that we will allow weirdnesses like 1 + true! But it will simplify the
encoding, the grammar and consequently the metaprogramming didactic.

Let’s begin with the usual incantations, where we import Lean and open Lean,
Lean.Elab, and Lean.Meta.

import Lean

open Lean Elab Meta

We begin by defining our atomic literal value.

inductive IMPLit
| nat : Nat → IMPLit
| bool : Bool → IMPLit

This is our only unary operator

inductive IMPUnOp
| not

These are our binary operations.

42

http://concrete-semantics.org/concrete-semantics.pdf

Metaprogramming in Lean 4

inductive IMPBinOp
| and | add | less

Now we define the expressions that we want to handle.

inductive IMPExpr
| lit : IMPLit → IMPExpr
| var : String → IMPExpr
| un : IMPUnOp → IMPExpr → IMPExpr
| bin : IMPBinOp → IMPExpr → IMPExpr → IMPExpr

And finally the commands of our language. Let’s follow the book and say that “each
piece of a program is also a program”:

inductive IMPProgram
| Skip : IMPProgram
| Assign : String → IMPExpr → IMPProgram
| Seq : IMPProgram → IMPProgram → IMPProgram
| If : IMPExpr → IMPProgram → IMPProgram → IMPProgram
| While : IMPExpr → IMPProgram → IMPProgram

Now that we have our data types, let’s elaborate terms of Syntax into terms of Expr.
We begin by defining the syntax and an elaboration function for literals.

declare_syntax_cat imp_lit
syntax num : imp_lit
syntax "true" : imp_lit
syntax "false" : imp_lit

def elabIMPLit : Syntax → MetaM Expr
-- `mkAppM` creates an `Expr.app`, given the function `Name` and the args
-- `mkNatLit` creates an `Expr` from a `Nat`
| `(imp_lit| $n:num) => mkAppM ``IMPLit.nat #[mkNatLit n.toNat]
-- `mkConst` creates an `Expr.const` given the constant `Name`
| `(imp_lit| true) => mkAppM ``IMPLit.bool #[mkConst ``Bool.true]
| `(imp_lit| false) => mkAppM ``IMPLit.bool #[mkConst ``Bool.false]
| _ => throwUnsupportedSyntax

elab "test_elabIMPLit " l:imp_lit : term => elabIMPLit l

#reduce test_elabIMPLit 4 -- IMPLit.nat 4

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

43

Metaprogramming in Lean 4

#reduce test_elabIMPLit true -- IMPLit.bool true
#reduce test_elabIMPLit false -- IMPLit.bool true

Now we can elaborate our (only) unary operator

declare_syntax_cat imp_unop
syntax "not" : imp_unop

def elabIMPUnOp : Syntax → MetaM Expr
| `(imp_unop| not) => return mkConst ``IMPUnOp.not
| _ => throwUnsupportedSyntax

And our binary operators:

declare_syntax_cat imp_binop
syntax "+" : imp_binop
syntax "and" : imp_binop
syntax "<" : imp_binop

The following function could very well be pure (Syntax → Expr), but we’re staying
in MetaM because it allows us to easily throw an error for match completion.

def elabIMPBinOp : Syntax → MetaM Expr
| `(imp_binop| +) => return mkConst ``IMPBinOp.add
| `(imp_binop| and) => return mkConst ``IMPBinOp.and
| `(imp_binop| <) => return mkConst ``IMPBinOp.less
| _ => throwUnsupportedSyntax

The operators are needed for our expressions. See below:

declare_syntax_cat imp_expr
syntax imp_lit : imp_expr
syntax ident : imp_expr
syntax imp_unop imp_expr : imp_expr
syntax imp_expr imp_binop imp_expr : imp_expr

Let’s also allow parentheses so the IMP programmer can denote their parsing
precedence.

syntax "(" imp_expr ")" : imp_expr

Now we can elaborate our expressions. Note that expressions can be recursive.
This means that our elabIMPExpr function will need to be recursive! We’ll need

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

44

Metaprogramming in Lean 4

to use partial because Lean can’t prove the termination of Syntax consumption
alone.

partial def elabIMPExpr : Syntax → MetaM Expr
| `(imp_expr| $l:imp_lit) => do
let l ← elabIMPLit l
mkAppM ``IMPExpr.lit #[l]

-- `mkStrLit` creates an `Expr` from a `String`
| `(imp_expr| $i:ident) => mkAppM ``IMPExpr.var #[mkStrLit i.getId.toString]
| `(imp_expr| $b:imp_unop $e:imp_expr) => do
let b ← elabIMPUnOp b
let e ← elabIMPExpr e -- recurse!
mkAppM ``IMPExpr.un #[b, e]

| `(imp_expr| $l:imp_expr $b:imp_binop $r:imp_expr) => do
let l ← elabIMPExpr l -- recurse!
let r ← elabIMPExpr r -- recurse!
let b ← elabIMPBinOp b
mkAppM ``IMPExpr.bin #[b, l, r]

| `(imp_expr| ($e:imp_expr)) => elabIMPExpr e
| _ => throwUnsupportedSyntax

elab "test_elabIMPExpr " e:imp_expr : term => elabIMPExpr e

#reduce test_elabIMPExpr a
-- IMPExpr.var "a"

#reduce test_elabIMPExpr a + 5
-- IMPExpr.bin IMPBinOp.add (IMPExpr.var "a") (IMPExpr.lit (IMPLit.nat 5))

#reduce test_elabIMPExpr 1 + true
-- IMPExpr.bin IMPBinOp.add (IMPExpr.lit (IMPLit.nat 1)) (IMPExpr.lit (IMPLit.bool true))

And now we have everything we need to elaborate our IMP programs!

declare_syntax_cat imp_program
syntax "skip" : imp_program
syntax ident ":=" imp_expr : imp_program

syntax imp_program ";;" imp_program : imp_program

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

45

Metaprogramming in Lean 4

syntax "if" imp_expr "then" imp_program "else" imp_program "fi" : imp_program
syntax "while" imp_expr "do" imp_program "od" : imp_program

partial def elabIMPProgram : Syntax → MetaM Expr
| `(imp_program| skip) => return mkConst ``IMPProgram.Skip
| `(imp_program| $i:ident := $e:imp_expr) => do
let i : Expr := mkStrLit i.getId.toString
let e ← elabIMPExpr e
mkAppM ``IMPProgram.Assign #[i, e]

| `(imp_program| $p₁:imp_program ;; $p₂:imp_program) => do
let p₁ ← elabIMPProgram p₁
let p₂ ← elabIMPProgram p₂
mkAppM ``IMPProgram.Seq #[p₁, p₂]

| `(imp_program| if $e:imp_expr then $pT:imp_program else $pF:imp_program fi) => do
let e ← elabIMPExpr e
let pT ← elabIMPProgram pT
let pF ← elabIMPProgram pF
mkAppM ``IMPProgram.If #[e, pT, pF]

| `(imp_program| while $e:imp_expr do $pT:imp_program od) => do
let e ← elabIMPExpr e
let pT ← elabIMPProgram pT
mkAppM ``IMPProgram.While #[e, pT]

| _ => throwUnsupportedSyntax

And we can finally test our full elaboration pipeline. Let’s use the following syn-
tax:

elab ">>" p:imp_program "<<" : term => elabIMPProgram p

#reduce >>
a := 5;;
if not a and 3 < 4 then
c := 5

else
a := a + 1

fi;;
b := 10
<<

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

46

Metaprogramming in Lean 4

-- IMPProgram.Seq (IMPProgram.Assign "a" (IMPExpr.lit (IMPLit.nat 5)))
-- (IMPProgram.Seq
-- (IMPProgram.If
-- (IMPExpr.un IMPUnOp.not
-- (IMPExpr.bin IMPBinOp.and (IMPExpr.var "a")
-- (IMPExpr.bin IMPBinOp.less (IMPExpr.lit (IMPLit.nat 3)) (IMPExpr.lit (IMPLit.nat 4)))))
-- (IMPProgram.Assign "c" (IMPExpr.lit (IMPLit.nat 5)))
-- (IMPProgram.Assign "a" (IMPExpr.bin IMPBinOp.add (IMPExpr.var "a") (IMPExpr.lit (IMPLit.nat 1)))))
-- (IMPProgram.Assign "b" (IMPExpr.lit (IMPLit.nat 10))))

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

47

Tactics

We’ve finally come to what may be considered by many the end goal of this book.
The reason why this chapter is placed after the DSL chapter is because the tactic
mode in Lean 4 is itself a DSL.

Tactics too are Lean programs that manipulate a custom state. All tactics are, in
the end, of type TacticM Unit. This has the type:

-- Lean/Elab/Tactic/Basic.lean
TacticM = ReaderT Context $ StateRefT State TermElabM

We will start by implementing tactics that compute in TacticM and then we shall
see how some tactics can be implemented as macros.

The simplest tactic: sorry

In this section, we wish to write a tactic that fills the proof with sorry:

theorem wrong : 1 = 2 := by
custom_sorry

#print wrong
-- theorem wrong : 1 = 2 :=
-- sorryAx (1 = 2)

We begin by declaring such a tactic:

import Lean.Elab.Tactic

elab "custom_sorry_0" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"1) goal: {goal.name}"

48

Metaprogramming in Lean 4

theorem wrong : 1 = 2 := by
custom_sorry_0

-- 1) goal: _uniq.461
-- unsolved goals: ⊢ 1 = 2

This defines a syntax extension to Lean, where we are naming the piece of syntax
admit as living in tactic syntax category. This informs the elaborator that in the
context of elaborating tactics, the piece of syntax admit must be elaborated as
what we write to the right-hand-side of the => (we fill the ... with the body of the
tactic).

Next, we write a term in TacticM Unitwhich fills in the goal with a sorryAx _. To do
this, we first access the goal, and then we fill the goal in with a sorryAx. We access
the goal with Lean.Elab.Tactic.getMainGoal : Tactic MVarId, which returns the
main goal, represented as a metavariable. Recall that under types-as-propositions,
the type of our goal must be the proposition that 1 = 2. We check this by printing
the type of goal.

elab "custom_sorry_1" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"1) goal: {goal.name}"
let goal_declaration ← Lean.Meta.getMVarDecl goal
let goal_type := goal_declaration.type
dbg_trace f!"2) goal type: {goal_type}"

theorem wrong_1 : 1 = 2 := by
custom_sorry_1

-- 1) goal: _uniq.757
-- 2) goal type:
-- Eq.{1} Nat
-- (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))
-- (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
-- unsolved goals: ⊢ 1 = 2

To sorry the goal, we can use the helper Lean.Elab.admitGoal:

elab "custom_sorry_2" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_declaration ← Lean.Meta.getMVarDecl goal
let goal_type := goal_declaration.type

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

49

Metaprogramming in Lean 4

Lean.Elab.admitGoal goal

theorem wrong_2 : 1 = 2 := by
custom_sorry_2

#print wrong_2
-- theorem wrong_2 : 1 = 2 :=
-- sorryAx (1 = 2)

And we no longer have the error unsolved goals: ⊢ 1 = 2.

The custom_trivial tactic: Accessing Hypotheses

In this section, we will learn how to access the hypotheses to prove a goal. In
particular, we shall attempt to implement a tactic custom_trivial, which looks
for an exact match of the goal among the hypotheses, and solves the theorem if
possible.

In the example below, we expect custom_trivial to use (H2 : 2 = 2) to solve the
goal (2 = 2):

theorem trivial_correct (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial

#print trivial_correct
-- theorem trivial_correct : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => H2

When we do not have a matching hypothesis to the goal, we expect the tactic cus-
tom_trivial to throw an error, telling us that we cannot find a hypothesis of the
type we are looking for:

theorem trivial_wrong (H1 : 1 = 1): 2 = 2 := by
custom_trivial

#print trivial_wrong
-- tactic 'custom_trivial' failed, unable to find matching hypothesis of type (2 = 2)
-- H1 : 1 = 1
-- ⊢ 2 = 2

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

50

Metaprogramming in Lean 4

We begin by accessing the goal and the type of the goal so we know what we are
trying to prove:

elab "custom_trivial_0" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"1) goal: {goal.name}"
let goal_type ← Lean.Elab.Tactic.getMainTarget
dbg_trace f!"2) goal type: {goal_type}"

theorem trivial_correct_0 (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial_0

-- 1) goal: _uniq.638
-- 2) goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
-- unsolved goals
-- H1 : 1 = 1
-- H2 : 2 = 2
-- ⊢ 2 = 2

#print trivial_correct_0
-- theorem trivial_correct_0 : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => sorryAx (2 = 2)

theorem trivial_wrong_0 (H1 : 1 = 1): 2 = 2 := by
custom_trivial_0

-- 1) goal: _uniq.713
-- 2) goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
-- unsolved goals
-- H1 : 1 = 1
-- ⊢ 2 = 2

#print trivial_wrong_0
-- theorem trivial_wrong : 1 = 1 → 2 = 2 :=
-- fun H1 => sorryAx (2 = 2)

Next, we access the list of hypotheses, which are stored in a data structure called
LocalContext. This is accessed via Lean.MonadLCtx.getLCtx. The LocalContext
contains LocalDeclarations, from which we can extract information such as the
name that is given to declarations (.userName), the expression of the declaration
(.toExpr). Let’s write a tactic called list_local_decls that prints the local decla-

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

51

Metaprogramming in Lean 4

rations:

elab "list_local_decls_1" : tactic => do
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
dbg_trace f!"+ local decl: name: {ldecl_name} | expr: {ldecl_expr}"

theorem test_list_local_decls_1 (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
list_local_decls_1

-- + local decl: name: test_list_local_decls_1 | expr: _uniq.3339
-- + local decl: name: H1 | expr: _uniq.3340
-- + local decl: name: H2 | expr: _uniq.3341
rfl

Recall that we are looking for a local declaration that has the same type as the
hypothesis. We get the type of LocalDefinition by calling Lean.Meta.inferType
on the local declaration’s expression.

elab "list_local_decls_2" : tactic => do
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
let ldecl_type ← Lean.Meta.inferType ldecl_expr -- **NEW:** Find the type.
dbg_trace f!"+ local decl: name: {ldecl_name} | expr: {ldecl_expr} | type: {ldecl_type}"

theorem test_list_local_decls_2 (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
list_local_decls_2
-- + local decl: name: test_list_local_decls_2 | expr: _uniq.4263 | type: (Eq.{1} Nat ...)
-- + local decl: name: H1 | expr: _uniq.4264 | type: Eq.{1} Nat ...)
-- + local decl: name: H2 | expr: _uniq.4265 | type: Eq.{1} Nat ...)
rfl

We check if the type of the LocalDefinition is equal to the goal type with
Lean.Meta.isExprDefEq. See that we check if the types are equal at eq?, and we
print that H1 has the same type as the goal (local decl[EQUAL? true]: name: H1),
and we print that H2 does not have the same type (local decl[EQUAL? false]:
name: H2):

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

52

Metaprogramming in Lean 4

elab "list_local_decls_3" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_declaration ← Lean.Meta.getMVarDecl goal
let goal_type := goal_declaration.type
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
let ldecl_type ← Lean.Meta.inferType ldecl_expr -- Find the type.
let eq? ← Lean.Meta.isExprDefEq ldecl_type goal_type -- **NEW** Check if type equals goal type.
dbg_trace f!"+ local decl[EQUAL? {eq?}]: name: {ldecl_name}"

theorem test_list_local_decls_3 (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
list_local_decls_3

-- + local decl[EQUAL? false]: name: test_list_local_decls_3
-- + local decl[EQUAL? true]: name: H1
-- + local decl[EQUAL? false]: name: H2
rfl

Finally, we put all of these parts together to write a tactic that loops over
all declarations and finds one with the correct type. We loop over dec-
larations with lctx.findDeclM?. We infer the type of declarations with
Lean.Meta.inferType. We check that the declaration has the same type as
the goal with Lean.Meta.isExprDefEq:

elab "custom_trivial_1" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_type ← Lean.Elab.Tactic.getMainTarget
let lctx ← Lean.MonadLCtx.getLCtx
-- Iterate over the local declarations...
let option_matching_expr ← lctx.findDeclM? fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_type ← Lean.Meta.inferType ldecl_expr -- Find the type.
if (← Lean.Meta.isExprDefEq ldecl_type goal_type) -- Check if type equals goal type.
then return Option.some ldecl_expr -- If equal, success!
else return Option.none -- Not found.

dbg_trace f!"matching_expr: {option_matching_expr}"

theorem trivial_correct_1 (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

53

Metaprogramming in Lean 4

custom_trivial_1
-- matching_expr: some _uniq.6241
rfl

#print trivial_correct_1
-- theorem trivial_correct_1 : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => sorryAx (2 = 2) false

theorem trivial_wrong_1 (H1 : 1 = 1): 2 = 2 := by
custom_trivial_1

-- matching_expr: none
rfl

#print trivial_wrong_1
-- theorem trivial_wrong_1 : 1 = 1 → 2 = 2 :=
-- fun H1 => sorryAx (2 = 2) false

Now that we are able to find thematching expression, we need to close the theorem
by using the match. We do this with Lean.Elab.Tactic.closeMainGoal. When we
do not have amatching expression, we throw an error with Lean.Meta.throwTacticEx,
which allows us to report an error corresponding to a given goal. When throwing
this error, we format the error using m!"..." which builds a MessageData. This
provides nicer error messages than using f!"..." which builds a Format. This
is because MessageData also runs delaboration, which allows it to convert raw
Lean terms like (Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
(OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) into readable strings like(2 = 2).
The full code listing given below shows how to do this:

elab "custom_trivial_2" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_type ← Lean.Elab.Tactic.getMainTarget
let lctx ← Lean.MonadLCtx.getLCtx
let option_matching_expr ← lctx.findDeclM? fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr
let ldecl_type ← Lean.Meta.inferType ldecl_expr
if ← Lean.Meta.isExprDefEq ldecl_type goal_type
then return Option.some ldecl_expr
else return Option.none

match option_matching_expr with

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

54

Metaprogramming in Lean 4

| some e => Lean.Elab.Tactic.closeMainGoal e
| none => do
Lean.Meta.throwTacticEx `custom_trivial_2 goal (m!"unable to find matching hypothesis of type ({goal_type})")

theorem trivial_correct_2 (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial_2

#print trivial_correct_2
-- theorem trivial_correct_2 : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => H2

theorem trivial_wrong_2 (H1 : 1 = 1): 2 = 2 := by
custom_trivial_2

-- tactic 'custom_trivial_2' failed, unable to find matching hypothesis of type (2 = 2)
-- H1 : 1 = 1
-- ⊢ 2 = 2

Tweaking the context

Until now, we’ve only performed read-like operations with the context. But what if
we want to change it?

In this section we will see how to change the order of goals and how to add content
to it (new hypotheses).

For the first task, we can use Lean.Elab.Tactic.getGoals and Lean.Elab.Tactic.setGoals:

elab "reverse_goals" : tactic => do
let goals : List Lean.MVarId ← Lean.Elab.Tactic.getGoals
Lean.Elab.Tactic.setGoals goals.reverse

theorem test_reverse_goals : (1 = 2 ∧ 3 = 4) ∧ 5 = 6 := by
constructor
constructor

-- case left.left
-- ⊢ 1 = 2
-- case left.right
-- ⊢ 3 = 4
-- case right

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

55

Metaprogramming in Lean 4

-- ⊢ 5 = 6
reverse_goals

-- case right
-- ⊢ 5 = 6
-- case left.right
-- ⊢ 3 = 4
-- case left.left
-- ⊢ 1 = 2

Now let’s try to simulate a let and a have. For this task, first we will need to use
Lean.Elab.Tactic.withMainContext, which can run commands taking into consid-
eration the entire goal state. This is important because if the user has some n :
Nat in the context and wants to do custom_have h : n = n := rfl then our tactic
will need to elaborate the type n = n while knowing what n is.

Then, after elaborating our terms, we will need to use the helper function
Lean.Elab.Tactic.liftMetaTactic, which allows us to run computations in MetaM
while also giving us the goal MVarId for us to play with. In the end of our compu-
tation, liftMetaTactic expects us to return a List MVarId as the resulting list of
goals.

The only substantial difference between custom_let and custom_have is that the
former uses Lean.Meta.define and the later uses Lean.Meta.assert:

open Lean.Elab.Tactic in
elab "custom_let " n:ident " : " t:term " := " v:term : tactic =>
withMainContext do
let t ← elabTerm t none
let v ← elabTermEnsuringType v t
liftMetaTactic fun mvarId => do
let mvarIdNew ← Lean.Meta.define mvarId n.getId t v
let (_, mvarIdNew) ← Lean.Meta.intro1P mvarIdNew
return [mvarIdNew]

open Lean.Elab.Tactic in
elab "custom_have " n:ident " : " t:term " := " v:term : tactic =>
withMainContext do
let t ← elabTerm t none
let v ← elabTermEnsuringType v t
liftMetaTactic fun mvarId => do

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

56

Metaprogramming in Lean 4

let mvarIdNew ← Lean.Meta.assert mvarId n.getId t v
let (_, mvarIdNew) ← Lean.Meta.intro1P mvarIdNew
return [mvarIdNew]

theorem test_faq_have : True := by
custom_let n : Nat := 5
custom_have h : n = n := rfl

-- n : Nat := 5
-- h : n = n
-- ⊢ True
trivial

Tactics by Macro Expansion

Just like many other parts of the Lean 4 infrastructure, tactics too can be declared
by lightweight macro expansion.

For example, we build an example of a custom_sorry_macro that elaborates into
a sorry. We write this as a macro expansion, which expands the piece of syntax
custom_sorry_macro into the piece of syntax sorry:

macro "custom_sorry" : tactic => `(tactic| sorry)

theorem test_sorry_custom_macro: 1 = 42 := by
custom_sorry

#print test_sorry_custom_macro
-- theorem test_sorry_custom_macro : 1 = 42 :=
-- sorryAx (1 = 42) false

Implementing trivial: Extensible Tactics by Macro Expansion

As more complex examples, we can write a tactic such as custom_trivial, which
is initially left completely unimplemented, and can be extended with more tactics.
We start by simply declaring the tactic with no implementation:

syntax "custom_trivial" : tactic

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

57

Metaprogramming in Lean 4

theorem test_custom_trivial_macro_0: 42 = 42 := by
custom_trivial

-- tactic 'tacticCustom_trivial' has not been implemented
sorry

We will now add the rfl tactic into custom_trivial, which will allow us to prove
the previous theorem

macro_rules
| `(tactic| custom_trivial) => `(tactic| rfl)

theorem test_custom_trivial_macro_1: 42 = 42 := by
custom_trivial

-- Goals accomplished

We can now try a harder problem, that cannot be immediately dispatched by rfl:

theorem test_custom_trivial_macro_2: 43 = 43 ∧ 42 = 42:= by
custom_trivial

-- tactic 'rfl' failed, equality expected{indentExpr targetType}
-- ⊢ 43 = 43 ∧ 42 = 42

We extend the custom_trivial tactic with a tactic that tries to break And down
with apply And.intro, and then (recursively (!)) applies custom_trivial to the
two cases with (<;> trivial) to solve the generated subcases 43 = 43, 42 = 42.

macro_rules
| `(tactic| custom_trivial) => `(tactic| apply And.intro <;> custom_trivial)

The above declaration uses <;> which is a tactic combinator. Here, a <;> b means
“run tactic a, and apply”b” to each goal after running a“. Thus, And.intro <;>
custom_trivialmeans”run And.intro, and then run custom_trivial on each goal”.
We test it out on our previous theorem and see that we dispatch the theorem.

theorem test_custom_trivial_macro_3 : 43 = 43 ∧ 42 = 42 := by
custom_trivial

-- Goals accomplished

In summary, we declared an extensible tactic called custom_trivial. It initially
had no elaboration at all. We added the rfl as an elaboration of custom_trivial,
which allowed it to solve the goal 42 = 42. We then tried a harder theorem, 43
= 43 ∧ 42 = 42 which custom_trivial was unable to solve. We were then able

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

58

Metaprogramming in Lean 4

to enrich custom_trivial to split “and” with And.intro, and also recursively call
custom_trivial in the two subcases.

Implementing <;>: Tactic Combinators by Macro Expansion

Recall that in the previous section, we say that a <;> b meant “run a, and then
run b for all goals”. In fact, <;> itself is a tactic combinator. In this section, we will
implement the syntax a and_then b which will stand for “run a, and then run b for
all goals”.

-- 1. We declare the syntax `and_then`
syntax tactic " and_then " tactic : tactic

-- 2. We write the expander that expands the tactic
-- into running `a`, and then running `b` on all goals.
macro_rules
| `(tactic| $a:tactic and_then $b:tactic) =>

`(tactic| $a:tactic; all_goals $b:tactic)

-- 3. We test this tactic.
theorem test_and_then: 1 = 1 ∧ 2 = 2 := by
apply And.intro and_then rfl

#print test_and_then
-- theorem test_and_then : 1 = 1 ∧ 2 = 2 :=
-- { left := Eq.refl 1, right := Eq.refl 2 }

FAQ

In this section, we collect common patterns that are used during writing tactics, to
make it easy to find common patterns.

Q: How do I use goals?

A: Goals are represented as metavariables. The module Lean.Elab.Tactic.Basic
has many functions to add new goals, switch goals, etc.

Q: How do I get the main goal?

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

59

Metaprogramming in Lean 4

A: Use Lean.Elab.Tactic.getMainGoal.

elab "faq_main_goal" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"goal: {goal.name}"

theorem test_faq_main_goal: 1 = 1 := by
faq_main_goal

-- goal: _uniq.9298
rfl

Q: How do I get the list of goals?

A: Use getGoals.

elab "faq_get_goals" : tactic => do
let goals ← Lean.Elab.Tactic.getGoals
goals.forM $ fun goal => do
let goal_type ← Lean.Meta.getMVarType goal
dbg_trace f!"goal: {goal.name} | type: {goal_type}"

theorem test_faq_get_goals (b: Bool): b = true := by
cases b;
faq_get_goals

-- goal: _uniq.10067 | type: Eq.{1} Bool Bool.false Bool.true
-- goal: _uniq.10078 | type: Eq.{1} Bool Bool.true Bool.true
sorry
rfl

Q: How do I get the current hypotheses for a goal?

A: Use Lean.MonadLCtx.getLCtx which provides the local context, and then iterate
on the LocalDeclarations of the LocalContext with accessors such as foldlM and
forM.

elab "faq_get_hypotheses" : tactic => do
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM (fun (ldecl: Lean.LocalDecl) => do

let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_type := ldecl.type -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
dbg_trace f!" local decl: name: {ldecl_name} | expr: {ldecl_expr} | type: {ldecl_type}"

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

60

Metaprogramming in Lean 4

)

theorem test_faq_get_hypotheses (H1 : 1 = 1) (H2 : 2 = 2): 3 = 3 := by
faq_get_hypotheses
-- local decl: name: test_faq_get_hypotheses | expr: _uniq.10814 | type: ...
-- local decl: name: H1 | expr: _uniq.10815 | type: ...
-- local decl: name: H2 | expr: _uniq.10816 | type: ...
rfl

Q: How do I evaluate a tactic?

A: Use Lean.Elab.Tactic.evalTactic: Syntax → TacticM Unit which evaluates a
given tactic syntax. One can create tactic syntax using the macro (tactic| ⋯).

For example, one could call try rfl with the piece of code:

Lean.Elab.Tactic.evalTactic (← `(tactic| try rfl))

Q: How do I check if two expressions are equal?

A: Use Lean.Meta.isExprDefEq <expr-1> <expr-2>.

#check Lean.Meta.isExprDefEq
-- Lean.Meta.isExprDefEq : Lean.Expr → Lean.Expr → Lean.MetaM Bool

Q: How do I throw an error from a tactic?

A: Use throwTacticEx <tactic-name> <goal-mvar> <error>.

elab "faq_throw_error" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
Lean.Meta.throwTacticEx `faq_throw_error goal "throwing an error at the current goal"

theorem test_faq_throw_error (b : Bool): b = true := by
cases b;
faq_throw_error
-- case true
-- ⊢ true = true
-- tactic 'faq_throw_error' failed, throwing an error at the current goal
-- case false
-- ⊢ false = true

Q:What is the difference between Lean.Elab.Tactic.* and Lean.Meta.Tactic.*?

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

61

Metaprogramming in Lean 4

A: Lean.Meta.Tactic.* contains low level code that uses the Meta monad to im-
plement basic features such as rewriting. Lean.Elab.Tactic.* contains high-level
code that connects the low level development in Lean.Meta to the tactic infrastruc-
ture and the parsing front-end.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

62

Lean4 Cheat-sheet

Extracting information

• Extract the goal: Lean.Elab.Tactic.getMainGoal

Use as let goal ← Lean.Elab.Tactic.getMainGoal

• Extract the declaration out of a meta-variable: Lean.Meta.getMVarDecl mvar
when mvar : Lean.MVarId is in context. For instance, mvar could be the goal
extracted using getMainGoal

• Extract the type of a meta-variable: Lean.MetavarDecl.type mvdecl when
mvdecl : Lean.MetavarDecl is in context.

• Extract the type of the main goal: Lean.Elab.Tactic.getMainTarget

Use as let goal_type ← Lean.Elab.Tactic.getMainTarget

Achieves the same as

let goal ← Lean.Elab.Tactic.getMainGoal
let goal_decl ← Lean.Meta.getMVarDecl goal
let goal_type := goal_decl.type

• Extract local context: Lean.MonadLCtx.getLCtx

Use as let lctx ← Lean.MonadLCtx.getLCtx

• Extract the name of a declaration: Lean.LocalDecl.userName ldecl when
ldecl : Lean.LocalDecl is in context

• Extract the type of an expression: Lean.Meta.inferType expr when expr :
Lean.Expr is an expression in context

Use as let expr_type ← Lean.Meta.inferType expr

63

Metaprogramming in Lean 4

Playing around with expressions

• Convert a declaration into an expression: Lean.LocalDecl.toExpr

Use as ldecl.toExpr, when ldecl : Lean.LocalDecl is in context

For instance, ldecl could be let ldecl ← Lean.MonadLCtx.getLCtx

• Checkwhether two expressions are definitionally equal: Lean.Meta.isExprDefEq
ex1 ex2 when ex1 ex2 : Lean.Expr are in context. Returns a Lean.MetaM
Bool

isDefEq ex1 ex2 appears to be a synonym

• Close a goal: Lean.Elab.Tactic.closeMainGoal expr when expr : Lean.Expr
is in context

Further commands

• meta-sorry: Lean.Elab.admitGoal goal, when goal : Lean.MVarId is the cur-
rent goal

Printing and errors

• Print a “permanent” message in normal usage:

Lean.Elab.logInfo f!"Hi, I will print\n{Syntax}"

• Print a message while debugging:

dbg_trace f!"1) goal: {Syntax_that_will_be_interpreted}".

• Throw an error: Lean.Meta.throwTacticEx name mvar message_data where
name : Lean.Name is the name of a tactic and mvar contains error data.

Use as Lean.Meta.throwTacticExtac goal (m¡‘unable to find matching hypoth-
esis of type ({goal_type})”)where them!formatting builds aMessageData‘
for better printing of terms

TODO: Add? * Lean.LocalContext.forM * Lean.LocalContext.findDeclM?

import Lean
open Lean

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

64

Options

Options are a way to communicate some special configuration to both your meta
programs and the Lean compiler itself. Basically it’s just a KVMap which is a simple
map from Name to a Lean.DataValue. Right now there are 6 kinds of data values: -
String - Bool - Name - Nat - Int - Syntax

Setting an option to tell the Lean compiler to do something different with your
program is quite simple with the set_option command:

#check 1 + 1 -- 1 + 1 : Nat

set_option pp.explicit true -- No custom syntax in pretty printing

#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

set_option pp.explicit false

You can furthermore limit an option value to just the next command or term:

set_option pp.explicit true in
#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

#check 1 + 1 -- 1 + 1 : Nat

#check set_option trace.Meta.synthInstance true in 1 + 1 -- the trace of the type class synthesis for `OfNat` and `HAdd`

If you want to know which options are available out of the Box right now you can
simply write out the set_option command andmove your cursor to where the name
is written, it should give you a list of them as auto completion suggestions. The
most useful group of options when you are debugging somemeta thing is the trace.
one.

65

https://github.com/leanprover/lean4/blob/master/src/Lean/Data/KVMap.lean

Metaprogramming in Lean 4

Options in meta programming

Now that we know how to set options, let’s take a look at how a meta program can
get access to them. The most common way to do this is via the MonadOptions type
class, an extension to Monad that provides a function getOptions : m Options. As
of now, it is implemented by: - CoreM - CommandElabM - LevelElabM - all monads to
which you can lift operations of one of the above (e.g. MetaM from CoreM)

Once we have an Options object, we can query the information via Options.get.
To show this, let’s write a command that prints the value of pp.explicit.

elab "#getPPExplicit" : command => do
let opts ← getOptions
-- defValue = default value
Elab.logInfo s!"pp.explicit : {opts.get pp.explicit.name pp.explicit.defValue}"

#getPPExplicit -- pp.explicit : false

set_option pp.explicit true in
#getPPExplicit -- pp.explicit : true

Note that the real implementation of getting pp.explicit, Lean.getPPExplicit,
uses whether pp.all is set as a default value instead.

Making our own

Declaring our own option is quite easy as well. The Lean compiler provides a macro
register_option for this. Let’s see it in action:

register_option book.myGreeting : String := {
defValue := "Hello World"
group := "pp"
descr := "just a friendly greeting"

}

However, we cannot just use an option that we just declared in the same file it was
declared in because of initialization restrictions.

import Lean
open Lean PrettyPrinter Delaborator SubExpr

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

66

Pretty Printing

The pretty printer is what Lean uses to present terms that have been elaborated
to the user. This is done by converting the Exprs back into Syntax and then even
higher level pretty printing datastructures. This means Lean does not actually
recall the Syntax it used to create some Expr: there has to be code that tells it
how to do that. In the big picture, the pretty printer consists of three parts run
in the order they are listed in: - the delaborator this will be our main interest
since we can easily extend it with our own code. Its job is to turn Expr back into
Syntax. - the parenthesizer responsible for adding parenthesis into the Syntax tree,
where it thinks they would be useful - the formatter responsible for turning the
parenthesized Syntax tree into a Format object that contains more pretty printing
information like explicit whitespaces

Delaboration

As its name suggests, the delaborator is in a sense the opposite of the elaborator.
The job of the elaborator is to take an Expr produced by the elaborator and turn
it back into a Syntax which, if elaborated, should produce an Expr that behaves
equally to the input one.

Delaborators have the type Lean.PrettyPrinter.Delaborator.Delab. This is an
alias for DelabM Syntax, where DelabM is the delaboration monad. All of this ma-
chinery is defined here. DelabM provides us with quite a lot of options you can look
up in the documentation (TODO: Docs link). We will merely highlight the most
relevant parts here. - It has a MonadQuotation instance which allows us to declare
Syntax objects using the familiar quotation syntax. - It can run MetaM code. - It has
a MonadExcept instance for throwing errors. - It can interact with pp options us-
ing functions like whenPPOption. - You can obtain the current subexpression using
SubExpr.getExpr. There is also an entire API defined around this concept in the
SubExpr module.

67

https://github.com/leanprover/lean4/tree/master/src/Lean/PrettyPrinter/Delaborator
https://github.com/leanprover/lean4/blob/master/src/Lean/PrettyPrinter/Parenthesizer.lean
https://github.com/leanprover/lean4/blob/master/src/Lean/PrettyPrinter/Formatter.lean
https://github.com/leanprover/lean4/blob/master/src/Lean/PrettyPrinter/Delaborator/Basic.lean

Metaprogramming in Lean 4

Making our own

Like so many things in metaprogramming the elaborator is based on an attribute,
in this case the delab one. delab expects a Name as an argument, this name has to
start with the name of an Expr constructor, most commonly const or app. This con-
structor name is then followed by the name of the constant we want to delaborate.
For example, if we want to delaborate a function foo in a special way we would use
app.foo. Let’s see this in action:

def foo : Nat → Nat := fun x => 42

@[delab app.foo]
def delabFoo : Delab := do
`(1)

#check foo -- 1 : Nat → Nat
#check foo 13 -- 1 : Nat, full applications are also pretty printed this way

This is obviously not a good delaborator since reelaborating this Syntax will not
yield the same Expr. Like with many other metaprogramming attributes we can
also overload delaborators:

@[delab app.foo]
def delabfoo2 : Delab := do
`(2)

#check foo -- 2 : Nat → Nat

The mechanism for figuring out which one to use is the same as well. The de-
laborators are tried in order, in reverse order of registering, until one does not
throw an error, indicating that it “feels unresponsible for the Expr”. In the case of
delaborators, this is done using failure:

@[delab app.foo]
def delabfoo3 : Delab := do
failure
`(3)

#check foo -- 2 : Nat → Nat, still 2 since 3 failed

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

68

Metaprogramming in Lean 4

In order to write a proper delaborator for foo, we will have to use some slightly
more advanced machinery though:

@[delab app.foo]
def delabfooFinal : Delab := do
let e ← getExpr
guard $ e.isAppOfArity' `foo 1 -- only delab full applications this way
let fn := mkIdent `fooSpecial
let arg ← withAppArg delab
`($fn $arg)

#check foo 42 -- fooSpecial 42 : Nat
#check foo -- 2 : Nat → Nat, still 2 since 3 failed

Can you extend delabFooFinal to also account for non full applications?

Unexpanders

While delaborators are obviously quite powerful it is quite often not necessary to
use them. If you look in the Lean compiler for @[delab or rather @[builtinDelab
(a special version of the delab attribute for compiler use, we don’t care about it),
you will see there are quite few occurences of it. This is because the majority of
pretty printing is in fact done by so called unexpanders. Unlike delaborators they
are of type Lean.PrettyPrinter.Unexpander which in turn is an alias for Syntax →
Lean.PrettyPrinter.UnexpandM Syntax. As you can see, they are Syntax to Syntax
translations, quite similar to macros, except that they are supposed to be the in-
verse of macros. The UnexpandMmonad is quite a lot weaker than DelabM but it still
has: - MonadQuotation for syntax quotations - The ability to throw errors, although
not very informative ones: throw () is the only valid one

Unexpanders are always specific to applications of one constant. They are regis-
tered using the appUnexpand attribute, followed by the name of said constant. The
unexpander is passed the entire application of the constant after the Expr has been
delaborated, without implicit arguments. Let’s see this in action:

def myid {α : Type} (x : α) := x

@[appUnexpander myid]
def unexpMyId : Unexpander

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

69

Metaprogramming in Lean 4

-- hygiene disabled so we can actually return `id` without macro scopes etc.
| `(myid $arg) => set_option hygiene false in `(id $arg)
| `(myid) => pure $ mkIdent `id
| _ => throw ()

#check myid 12 -- id 12 : Nat
#check myid -- id : ?m.3870 → ?m.3870

For a few nice examples of unexpanders you can take a look at NotationExtra

Mini project

As per usual, we will tackle a little mini project at the end of the chapter. This time
we build our own unexpander for a mini programming language. Note that many
ways to define syntax already have generation of the required pretty printer code
built-in, e.g. infix, and notation (however not macro_rules). So, for easy syntax,
you will never have to do this yourself.

declare_syntax_cat lang
syntax num : lang
syntax ident : lang
syntax "let " ident " := " lang " in " lang: lang
syntax "[Lang| " lang "]" : term

inductive LangExpr
| numConst : Nat → LangExpr
| ident : String → LangExpr
| letE : String → LangExpr → LangExpr → LangExpr

macro_rules
| `([Lang| $x:num]) => `(LangExpr.numConst $x)
| `([Lang| $x:ident]) => `(LangExpr.ident $(Lean.quote (toString x.getId)))
| `([Lang| let $x:ident := $v:lang in $b:lang]) => `(LangExpr.letE $(Lean.quote (toString x.getId)) [Lang| $v] [Lang| $b])

-- LangExpr.letE "foo" (LangExpr.numConst 12)
-- (LangExpr.letE "bar" (LangExpr.ident "foo") (LangExpr.ident "foo")) : LangExpr
#check [Lang|
let foo := 12 in

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

70

https://github.com/leanprover/lean4/blob/master/src/Init/NotationExtra.lean

Metaprogramming in Lean 4

let bar := foo in
foo

]

As you can see, the pretty printing output right now is rather ugly to look at. We
can do better with an unexpander:

@[appUnexpander LangExpr.numConst]
def unexpandNumConst : Unexpander
| `(LangExpr.numConst $x:num) => `([Lang| $x])
| _ => throw ()

@[appUnexpander LangExpr.ident]
def unexpandIdent : Unexpander
| `(LangExpr.ident $x:str) =>
if let some str := x.isStrLit? then
let name := mkIdent $ Name.mkSimple str
`([Lang| $name])

else
throw ()

| _ => throw ()

@[appUnexpander LangExpr.letE]
def unexpandLet : Unexpander
| `(LangExpr.letE $x:str [Lang| $v:lang] [Lang| $b:lang]) =>
if let some str := x.isStrLit? then
let name := mkIdent $ Name.mkSimple str
`([Lang| let $name := $v in $b])

else
throw ()

| _ => throw ()

-- [Lang| let foo := 12 in foo] : LangExpr
#check [Lang|
let foo := 12 in foo

]

-- [Lang| let foo := 12 in let bar := foo in foo] : LangExpr
#check [Lang|

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

71

Metaprogramming in Lean 4

let foo := 12 in
let bar := foo in
foo

]

That’s much better! As always, we encourage you to extend the language yourself
with things like parenthesized expressions, more data values, quotations for term
or whatever else comes to your mind.

Arthur Paulino, Damiano Testa, Edward Ayers, Henrik Böving, Jannis Limperg,
Siddhartha Gadgil, Siddharth Bhat

72

	Introduction
	What's the goal of this book?
	What does it mean to be in meta?
	Metaprogramming examples
	Building a command
	Building a DSL and a syntax for it
	Writing our own tactic

	Printing Messages

	Expressions
	Expression Data
	de-Bruijn Indexes
	Constructing Expressions

	MetaM
	Smart constructors for expressions
	Meta variables
	Telescopes

	Syntax
	Declaring Syntax
	Declaration helpers
	Free form syntax declarations
	Syntax combinators

	Operating on Syntax
	Constructing new Syntax
	Matching on Syntax
	Mini Project

	Macros
	What is a macro
	Simplifying macro declaration
	Hygiene issues and how to solve them
	MonadQuotation and MonadRef
	Mini project
	Reading further

	Elaboration
	Command elaboration
	Giving meaning to commands
	Command elaboration
	Making our own
	Mini project

	Term elaboration
	Giving meaning to terms
	Term elaboration
	Making our own
	Mini project

	Embedding DSLs By Elaboration
	Tactics
	The simplest tactic: sorry
	The custom_trivial tactic: Accessing Hypotheses
	Tweaking the context
	Tactics by Macro Expansion
	Implementing trivial: Extensible Tactics by Macro Expansion

	Implementing <;>: Tactic Combinators by Macro Expansion
	FAQ

	Lean4 Cheat-sheet
	Extracting information
	Playing around with expressions
	Further commands
	Printing and errors

	Options
	Options in meta programming
	Making our own

	Pretty Printing
	Delaboration
	Making our own

	Unexpanders
	Mini project

