A ForTheL-like CNL for Lean

Peter Koepke

June 7, 2019

This is a ForTheL version of some example text for a CNL for Lean proposed by Tom Hales at Big Proof 2019.

Preliminaries on Types

[synonym type/-s]

Signature 1. A type is a class. Let C stand for a class. Let A stand for a type. Let a : t stand for a is an element of t. Let $a \in t$ stand for a is an element of t.

Signature 2. C is finite is an atom.

Preliminaries on Numbers

[synonym number/-s]

Signature 3. A number is a notion. Let m, n, p, q denote numbers.

Signature 4. m * n is a number.

Signature 5. m-1 is a number.

Definition 1. A divisor of n is a number m such that n = m * a for some number a. Let m divides n stand for m is a divisor of n.

Signature 6. p^m is a number.

Signature 7. Assume C is finite. |C| is a number. Let the order of C stand for |C|. Let the size of C stand for |C|.

Signature 8. p is prime is an atom.

Signature 9. The multiplicity of p in n is a number.

Preliminaries on Groups

[synonym group/-s]

Signature 10. A group is a type. Let G, H denote groups.

Signature 11. Let x, y : G. $x *^G y$ is an element of G.

Signature 12. Let x : G. $x^{-1,G}$ is an element of G.

Definition 2. A subgroup of G is a group H such that every element of H is an element of G.

Axiom 1. Let G be a finite group. Every subgroup of G is finite.

Sylow Subgroups

Definition 3 (Conjugate). Assume g: G. Assume that H is a subgroup of G. The conjugate of H by g in G is the subgroup K of G such that for all elements x of $G x \in K \Leftrightarrow (g *^G x) *^G g^{-1,G} \in K$.

Definition 4 (Normalizer). Assume that H is a subgroup of G. The normalizer of H in G is the subgroup N of G such that for all elements x of G $x \in N$ iff for all elements h of H ($x^{-1,G} *^G h$) $*^G x \in H$.

Let G, P, Q denote finite groups. Let p denote a prime number. [synonym subgroup/-s]

Definition 5 (Sylow). A Sylow subgroup of G for p is a subgroup P of G such that $|P| = p^m$ where m is the multiplicity of p in |G|.

Definition 6. $Syl(p,G) = \{R \mid R \text{ is a Sylow subgroup of } Gforp\}.$

Axiom 2. Syl(p,G) is finite.

Definition 7. n(p,G) is the size of Syl(p,G).

Axiom 3 (Sylow1). There exists a Sylow subgroup of G for p.

Axiom 4 (Sylow2). If P, Q are Sylow subgroups of G for p then there exists g: G such that Q is the conjugate of P by g in G.

Axiom 5 (Sylow3a). Assume that $|G| = q * (p^m)$. Then n(p, G) divides q.

Axiom 6 (Sylow3b). p divides n(p,G) - 1.

Axiom 7 (Sylow3c). Let Norm be the normalizer of P in G where P is a Sylow subgroup of G for p. Then n(p, G) * |Norm| = |G|.