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CHAPTER

ONE

INTRODUCTION

1.1 Getting Started

So, you are ready to formalize some mathematics. Maybe you have heard that formalization is the future (say, from the
article The Mechanization of Mathematics, or the talk The Future of Mathematics), and you want in. Maybe you have
played the Natural Number Game and you are hooked. Maybe you have heard about Lean and its library mathlib through
online chatter and you want to know what the fuss is about. Or maybe you like mathematics and you like computers, and
you have some time to spare. If you are in any of these situations, this book is for you.
Although you can read a pdf or html version of this book online, it designed to be read interactively, running Lean from
inside the VS Code editor. To get started:

1. Install Lean, VS Code, and mathlib following the instructions in the community website.
2. In a terminal, type leanproject get mathematics_in_lean to set up a working directory for this

tutorial.
3. Type code mathematics_in_lean to open that directory in VS Code.

Opening the file welcome.lean will simultaneously open this tutorial in a VS Code window.
Every once in a while, you will see a code snippet like this:

#eval "Hello, World!"

Clicking on the try it! button in the upper right corner will open a copy in a window so that you can edit it, and Lean
provides feedback in the Lean Goal window. This book provides lots of challenging exercises for you to do that way.

1.2 Overview

Put simply, Lean is a tool for building complex expressions in a formal language known as dependent type theory.
Every expression has a type, and you can use the #check command to print it. Some expressions have types like N or N
→ N. These are mathematical objects.

#check 2 + 2

def f (x : N) := x + 3

#check f

Some expressions have type Prop. These are mathematical statements.

1
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import data.nat.basic

#check 2 + 2 = 4

def fermat_last_theorem :=
∀ x y z n : N, n > 2 ∧ x * y * z ̸= 0 → x^n + y^n ̸= z^n

#check fermat_last_theorem

Some expressions have a type, P, where P itself has type Prop. Such an expression is a proof of the proposition P.

theorem easy : 2 + 2 = 4 := rfl

#check easy

theorem hard : fermat_last_theorem := sorry

#check hard

If you manage to construct an expression of type fermat_last_theorem and Lean accepts it as a term of that type, you have
done something very impressive. (Using sorry is cheating, and Lean knows it.) So now you know the game. All that is
left to learn are the rules.
This book is complementary to a companion tutorial, Theorem Proving in Lean, which provides a more thorough intro-
duction to the underlying logical framework and core syntax of Lean. Theorem Proving in Lean is for people who prefer
to read a user manual cover to cover before using a new dishwasher. If you are the kind of person who prefers to hit the
start button and figure out how to activate the potscrubber feature later, it makes more sense to start here and refer back
to Theorem Proving in Lean as necessary.
Another thing that distinguishesMathematics in Lean from Theorem Proving in Lean is that here we place a much greater
emphasis on the use of tactics. Given that were are trying to build complex expressions, Lean offers two ways of going
about it: we can write down the expressions themselves (that is, suitable text descriptions thereof), or we can provide Lean
with instructions as to how to construct them. For example, the following expression represents a proof of the fact that if
n is even then so is m * n:

import data.nat.parity
open nat

example : ∀ m n : nat, even n → even (m * n) :=
assume m n ⟨k, (hk : n = 2 * k)⟩,
have hmn : m * n = 2 * (m * k),

by rw [hk, mul_left_comm],
show ∃ l, m * n = 2 * l,

from ⟨_, hmn⟩

The proof term can be compressed to a single line:

example : ∀ m n : nat, even n → even (m * n) :=
λ m n ⟨k, hk⟩, ⟨m * k, by rw [hk, mul_left_comm]⟩

The following is, instead, a tactic-style proof of the same theorem:

import data.nat.parity tactic
open nat

example : ∀ m n : nat, even n → even (m * n) :=
begin

(continues on next page)
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(continued from previous page)
-- say m and n are natural numbers, and assume n=2*k
rintros m n ⟨k, hk⟩,
-- We need to prove m*n is twice a natural. Let's show it's twice m*k.
use m * k,
-- substitute in for n
rw hk,
-- and now it's obvious
ring

end

As you enter each line of such a proof in VS Code, Lean displays the proof state in a separate window, telling you what
facts you have already established and what tasks remain to prove your theorem. You can replay the proof by stepping
through the lines, since Lean will continue to show you the state of the proof at the point where the cursor is. In this
example, you will then see that the first line of the proof introduces m and n (we could have renamed them at that point,
if we wanted to), and also decomposes the hypothesis even n to a k and the assumption that n = 2 * k. The second
line, use m * k, declares that we are going to show that m * n is even by showing m * n = 2 * (m * k). The
next line uses the rewrite tactic to replace n by 2 * k in the goal, and the ring tactic solves the resulting goal m *
(2 * k) = 2 * (m * k).
The ability to build a proof in small steps with incremental feedback is extremely powerful. For that reason, tactic proofs
are often easier and quicker to write than proof terms. There isn’t a sharp distinction between the two: tactic proofs can
be inserted in proof terms, as we did with the phrase by rw [hk, mul_left_comm] in the example above. We
will also see that, conversely, it is often useful to insert a short proof term in the middle of a tactic proof. That said, in
this book, our emphasis will be on the use of tactics.
In our example, the tactic proof can also be reduced to a one-liner:

example : ∀ m n : nat, even n → even (m * n) :=
by { rintros m n ⟨k, hk⟩, use m * k, rw hk, ring }

Here were have used tactics to carry out small proof steps. But they can also provide substantial automation, and justify
longer calculations and bigger inferential steps. For example, we can invoke Lean’s simplifier with specific rules for
simplifying statements about parity to prove our theorem automatically.

example : ∀ m n : nat, even n → even (m * n) :=
by intros; simp * with parity_simps

Another big difference between the two introductions is that Theorem Proving in Lean depends only on core Lean and its
built-in tactics, whereas Mathematics in Lean is built on top of Lean’s powerful and ever-growing library, mathlib. As a
result, we can show you how to use some of the mathematical objects and theorems in the library, and some of the very
useful tactics. This book is not meant to be used as an overview of the library; the community web pages contain extensive
documentation. Rather, our goal is to introduce you to the style of thinking that underlies that formalization, so that you
are comfortable browsing the library and finding things on your own.
Interactive theorem proving can be frustrating, and the learning curve is steep. But the Lean community is very welcoming
to newcomers, and people are available on the Lean Zulip chat group round the clock to answer questions. We hope to
see you there, and have no doubt that soon enough you, too, will be able to answer such questions and contribute to the
development of mathlib.
So here is your mission, should you choose to accept it: dive in, try the exercises, come to Zulip with questions, and have
fun. But be forewarned: interactive theorem proving will challenge you to think about mathematics and mathematical
reasoning in fundamentally new ways. Your life may never be the same.
Acknowledgments. We are grateful to Gabriel Ebner for setting up the infrastructure for running this tutorial in VS Code.
We are also grateful for help from Bryan Gin-ge Chen, Johan Commelin, Julian Külshammer, and Guilherme Silva.
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CHAPTER

TWO

BASICS

This chapter is designed to introduce you to the nuts and bolts of mathematical reasoning in Lean: calculating, applying
lemmas and theorems, and reasoning about generic structures.

2.1 Calculating

We generally learn to carry out mathematical calculations without thinking of them as proofs. But when we justify each
step in a calculation, as Lean requires us to do, the net result is a proof that the left-hand side of the calculation is equal
to the right-hand side.
In Lean, stating a theorem is tantamount to stating a goal, namely, the goal of proving the theorem. Lean provides the
rewrite tactic, abbreviated rw, to replace the left-hand side of an identity by the right-hand side in the goal. If a, b,
and c are real numbers, mul_assoc a b c is the identity a * b * c = a * (b * c) and mul_comm a
b is the identity a * b = b * a. Lean provides automation that generally eliminates the need to refer the facts like
these explicitly, but they are useful for the purposes of illustration. In Lean, multiplication associates to the left, so the
left-hand side of mul_assoc could also be written (a * b) * c. However, it is generally good style to be mindful
of Lean’s notational conventions and leave out parentheses when Lean does as well.
Let’s try out rw.

import data.real.basic

example (a b c : R) : (a * b) * c = b * (a * c) :=
begin

rw mul_comm a b,
rw mul_assoc b a c

end

The import line at the beginning of the example imports the theory of the real numbers from mathlib. For the sake
of brevity, we generally suppress information like this when it is repeated from example to example. Clicking the try
it! button displays the full example as it is meant to be processed and checked by Lean.
You are welcome to make changes to see what happens. You can type the R character as \R or \real in VS Code. The
symbol doesn’t appear until you hit space or the tab key. If you hover over a symbol when reading a Lean file, VS Code
will show you the syntax that can be used to enter it. If your keyboard does not have an easily accessible backslash, you
can change the leading character by changing the lean.input.leader setting.
When a cursor is in the middle of a tactic proof, Lean reports on the current proof state in the Lean infoview window. As
you move your cursor past each step of the proof, you can see the state change. A typical proof state in Lean might look
as follows:

5
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1 goal
x y : N,
h1 : prime x,
h2 : ¬even x,
h3 : y > x
⊢ y ≥ 4

The lines before the one that begins with ` denote the context: they are the objects and assumptions currently at play. In
this example, these include two objects, x and y, each a natural number. They also include three assumptions, labelled
h1, h2, and h3. In Lean, everything in a context is labelled with an identifier. You can type these subscripted labels as
h\1, h\2, and h\3, but any legal identifiers would do: you can use h1, h2, h3 instead, or foo, bar, and baz. The
last line represents the goal, that is, the fact to be proved. Sometimes people use target for the fact to be proved, and goal
for the combination of the context and the target. In practice, the intended meaning is usually clear.
Try proving these identities, in each case replacing sorry by a tactic proof. With the rw tactic, you can use a left arrow
(\l) to reverse an identity. For example, rw ← mul_assoc a b c replaces a * (b * c) by a * b * c in
the current goal.

example (a b c : R) : (c * b) * a = b * (a * c) :=
begin

sorry
end

example (a b c : R) : a * (b * c) = b * (a * c) :=
begin

sorry
end

You can also use identities like mul_assoc and mul_comm without arguments. In this case, the rewrite tactic tries to
match the left-hand side with an expression in the goal, using the first pattern it finds.

example (a b c : R) : a * b * c = b * c * a :=
begin

rw mul_assoc,
rw mul_comm

end

You can also provide partial information. For example, mul_comm a matches any pattern of the form a * ? and
rewrites it to ? * a. Try doing the first of these examples without providing any arguments at all, and the second with
only one argument.

example (a b c : R) : a * (b * c) = b * (c * a) :=
begin

sorry
end

example (a b c : R) : a * (b * c) = b * (a * c) :=
begin

sorry
end

You an also use rw with facts from the local context.

example (a b c d e f : R) (h : a * b = c * d) (h' : e = f) :
a * (b * e) = c * (d * f) :=

begin
rw h',

(continues on next page)
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(continued from previous page)
rw ←mul_assoc,
rw h,
rw mul_assoc

end

Try these:

example (a b c d e f : R) (h : b * c = e * f) :
a * b * c * d = a * e * f * d :=

begin
sorry

end

example (a b c d : R) (hyp : c = b * a - d) (hyp' : d = a * b) : c = 0 :=
begin

sorry
end

For the second one, you can use the theorem sub_self, where sub_self a is the identity a - a = 0.
We now introduce some useful features of Lean. First, multiple rewrite commands can be carried out with a single
command, by listing the relevant identities within square brackets. Second, when a tactic proof is just a single command,
we can replace the begin ... end block with a by.

example (a b c d e f : R) (h : a * b = c * d) (h' : e = f) :
a * (b * e) = c * (d * f) :=

by rw [h', ←mul_assoc, h, mul_assoc]

You still see the incremental progress by placing the cursor after a comma in any list of rewrites.
Another trick is that we can declare variables once and for all outside an example or theorem. When Lean sees them
mentioned in the statement of the theorem, it includes them automatically.

variables a b c d e f g : R

example (h : a * b = c * d) (h' : e = f) :
a * (b * e) = c * (d * f) :=

by rw [h', ←mul_assoc, h, mul_assoc]

Inspection of the tactic state at the beginning of the above proof reveals that Lean indeed included the relevant variables,
leaving out g that doesn’t feature in the statement. We can delimit the scope of the declaration by putting it in a section
... end block. Finally, recall from the introduction that Lean provides us with a command to determine the type of
an expression:

section
variables a b c : R

#check a
#check a + b
#check (a : R)
#check mul_comm a b
#check (mul_comm a b : a * b = b * a)
#check mul_assoc c a b
#check mul_comm a
#check mul_comm
#check @mul_comm

(continues on next page)
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(continued from previous page)

end

The #check command works for both objects and facts. In response to the command #check a, Lean reports that a
has type R. In response to the command #check mul_comm a b, Lean reports that mul_comm a b is a proof of
the fact a * b = b * a. The command #check (a : R) states our expectation that the type of a is R, and
Lean will raise an error if that is not the case. We will explain the output of the last three #check commands later, but
in the meanwhile, you can take a look at them, and experiment with some #check commands of your own.
Let’s try some more examples. The theorem two_mul a says that a + a = 2 * a. The theorems add_mul
and mul_add express the distributivity of multiplication over addition, and the theorem add_assoc expresses the
associativity of addition. Use the #check command to see the precise statements.

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
begin

rw [mul_add, add_mul, add_mul],
rw [←add_assoc, add_assoc (a * a)],
rw [mul_comm b a, ←two_mul]

end

Whereas it is possible to figure out what it going on in this proof by stepping through it in the editor, it is hard to read on
its own. Lean provides a more structured way of writing proofs like this using the calc keyword.

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc

(a + b) * (a + b)
= a * a + b * a + (a * b + b * b) :

by rw [mul_add, add_mul, add_mul]
... = a * a + (b * a + a * b) + b * b :

by rw [←add_assoc, add_assoc (a * a)]
... = a * a + 2 * (a * b) + b * b :

by rw [mul_comm b a, ←two_mul]

Notice that there is no more begin ... end block: an expression that begins with calc is a proof term. A calc
expression can also be used inside a tactic proof, but Lean interprets it as the instruction to use the resulting proof term
to solve the goal.
The calc syntax is finicky: the dots and colons and justification have to be in the format indicated above. Lean ignores
whitespace like spaces, tabs, and returns, so you have some flexibility to make the calculation look more attractive. One
way to write a calc proof is to outline it first using the sorry tactic for justification, make sure Lean accepts the
expression modulo these, and then justify the individual steps using tactics.

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc

(a + b) * (a + b)
= a * a + b * a + (a * b + b * b) :

begin
sorry

end
... = a * a + (b * a + a * b) + b * b : by sorry
... = a * a + 2 * (a * b) + b * b : by sorry

Try proving the following identity using both a pure rw proof and a more structured calc proof:

example : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
sorry

8 Chapter 2. Basics
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The following exercise is a little more challenging. You can use the theorems listed underneath.

example (a b : R) : (a + b) * (a - b) = a^2 - b^2 :=
begin

sorry
end

#check pow_two a
#check mul_sub a b c
#check add_mul a b c
#check add_sub a b c
#check sub_sub a b c
#check add_zero a

We can also perform rewriting in an assumption in the context. For example, rw mul_comm a b at hyp replaces
a * b by b * a in the assumption hyp.

example (a b c d : R) (hyp : c = d * a + b) (hyp' : b = a * d) :
c = 2 * a * d :=

begin
rw hyp' at hyp,
rw mul_comm d a at hyp,
rw ← two_mul (a * d) at hyp,
rw ← mul_assoc 2 a d at hyp,
exact hyp

end

In the last step, the exact tactic can use hyp to solve the goal because at that point hyp matches the goal exactly.
We close this section by noting that mathlib provides a useful bit of automation with a ring tactic, which is designed
to prove identities in any commutative ring.

example : (c * b) * a = b * (a * c) :=
by ring

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
by ring

example : (a + b) * (a - b) = a^2 - b^2 :=
by ring

example (hyp : c = d * a + b) (hyp' : b = a * d) :
c = 2 * a * d :=

begin
rw [hyp, hyp'],
ring

end

The ring tactic is imported indirectly when we import data.real.basic, but we will see in the next section that
it can be used for calculations on structures other than the real numbers. It can be imported explicitly with the command
import tactic. We will see there are similar tactics for other common kind of algebraic structures.

2.1. Calculating 9
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2.2 Proving Identities in Algebraic Structures

Mathematically, a ring consists of a collection of objects, R, operations + ×, and constants 0 and 1, and an operation
x 7→ −x such that:

• R with + is an abelian group, with 0 as the additive identity and negation as inverse.
• Multiplication is associative with identity 1, and multiplication distributes over addition.

In Lean, the collection of objects is represented as a type, R. The ring axioms are as follows:

import algebra.ring

variables (R : Type*) [ring R]

#check (add_assoc : ∀ a b c : R, a + b + c = a + (b + c))
#check (add_comm : ∀ a b : R, a + b = b + a)
#check (zero_add : ∀ a : R, 0 + a = a)
#check (add_left_neg : ∀ a : R, -a + a = 0)
#check (mul_assoc : ∀ a b c : R, a * b * c = a * (b * c))
#check (mul_one : ∀ a : R, a * 1 = a)
#check (one_mul : ∀ a : R, 1 * a = a)
#check (mul_add : ∀ a b c : R, a * (b + c) = a * b + a * c)
#check (add_mul : ∀ a b c : R, (a + b) * c = a * c + b * c)

You will learn more about the square brackets in the first line later, but for the time being, suffice it to say that the
declaration gives us a type, R, and a ring structure on R. Lean then allows us to use generic ring notation with elements
of R, and to make use of a library of theorems about rings.
The names of some of the theorems should look familiar: they are exactly the ones we used to calculate with the real
numbers in the last section. Lean is good not only for proving things about concrete mathematical structures like the
natural numbers and the integers, but also for proving things about abstract structures, characterized axiomatically, like
rings. Moreover, Lean supports generic reasoning about both abstract and concrete structures, and can be trained to
recognized appropriate instances. So any theorem about rings can be applied to concrete rings like the integers, Z, the
rational numbers, Q, and the complex numbers C. It can also be applied to any instance of an abstract structure that
extends rings, such as any ordered ring or any field.
Not all important properties of the real numbers hold in an arbitrary ring, however. For example, multiplication on the
real numbers is commutative, but that does not hold in general. If you have taken a course in linear algebra, you will
recognize that, for every n, the n by n matrices of real numbers form a ring in which commutativity usually fails. If we
declare R to be a commutative ring, in fact, all the theorems in the last section continue to hold when we replace R by R.

import tactic

variables (R : Type*) [comm_ring R]
variables a b c d : R

example : (c * b) * a = b * (a * c) :=
by ring

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
by ring

example : (a + b) * (a - b) = a^2 - b^2 :=
by ring

example (hyp : c = d * a + b) (hyp' : b = a * d) :
c = 2 * a * d :=

(continues on next page)
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(continued from previous page)
begin

rw [hyp, hyp'],
ring

end

We leave it to you to check that all the other proofs go through unchanged.
The goal of this section is to strengthen the skills you have developed in the last section and apply them to reasoning
axiomatically about rings. We will start with the axioms listed above, and use them to derive other facts. Most of the facts
we prove are already in mathlib. We will give the versions we prove the same names to help you learn the contents of
the library as well as the naming conventions.
Lean provides an organizational mechanism similar to those used in programming languages: when a definition or theorem
foo is introduced in a namespace bar, its full name is bar.foo. The command open bar later opens the namespace,
which allows us to use the shorter name foo. To avoid errors due to name clashes, in the next example we put our versions
of the library theorems in a new namespace called my_ring.
The next example shows that we do not need add_zero or add_right_neg as ring axioms, because they follow
from the other axioms.

import algebra.ring

namespace my_ring

variables {R : Type*} [ring R]

theorem add_zero (a : R) : a + 0 = a :=
by rw [add_comm, zero_add]

theorem add_right_neg (a : R) : a + -a = 0 :=
by rw [add_comm, add_left_neg]

end my_ring

#check @my_ring.add_zero
#check @add_zero

The net effect is that we can temporarily reprove a theorem in the library, and then go on using the library version after
that. But don’t cheat! In the exercises that follow, take care to use only the general facts about rings that we have proved
earlier in this section.
(If you are paying careful attention, you may have noticed that we changed the round brackets in (R : Type*) for
curly brackets in {R : Type*}. This declares R to be an implicit argument. We will explain what this means in a
moment, but don’t worry about it in the meanwhile.)
Here is a useful theorem:

theorem neg_add_cancel_left (a b : R) : -a + (a + b) = b :=
by rw [←add_assoc, add_left_neg, zero_add]

Prove the companion version:

theorem add_neg_cancel_right (a b : R) : (a + b) + -b = a :=
sorry

Use these to prove the following:

2.2. Proving Identities in Algebraic Structures 11
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theorem add_left_cancel {a b c : R} (h : a + b = a + c) : b = c :=
sorry

theorem add_right_cancel {a b c : R} (h : a + b = c + b) : a = c :=
sorry

With enough planning, you can do each of them with three rewrites.
We can now explain the use of the curly braces. Imagine you are in a situation where you have a, b, and c in your context,
as well as a hypothesis h : a + b = a + c, and you would like to draw the conclusion b = c. In Lean, you
can apply a theorem to hypotheses and facts just the same way that you can apply them to objects, so you might think
that add_left_cancel a b c h is a proof of the fact b = c. But notice that explicitly writing a, b, and c is
redundant, because the hypothesis h makes it clear that those are the objects we have in mind. In this case, typing a few
extra characters is not onerous, but if we wanted to apply add_left_cancel to more complicated expressions, writing
them would be tedious. In cases like these, Lean allows us to mark arguments as implicit, meaning that they are supposed
to be left out and inferred by other means, such as later arguments and hypotheses. The curly brackets in {a b c :
R} do exactly that. So, given the statement of the theorem above, the correct expression is simply add_left_cancel
h.
To illustrate, let us show that a * 0 = 0 follows from the ring axioms.

theorem mul_zero (a : R) : a * 0 = 0 :=
begin

have h : a * 0 + a * 0 = a * 0 + 0,
{ rw [←mul_add, add_zero, add_zero] },
rw add_left_cancel h

end

We have used a new trick! If you step through the proof, you can see what is going on. The have tactic introduces a
new goal, a * 0 + a * 0 = a * 0 + 0, with the same context as the original goal. In the next line, we could
have omitted the curly brackets, which serve as an inner begin ... end pair. Using them promotes a modular style
of proof: the part of the proof inside the brackets establishes the goal that was introduced by the have. After that, we
are back to proving the original goal, except a new hypothesis h has been added: having proved it, we are now free to use
it. At this point, the goal is exactly the result of add_left_cancel h. We could equally well have closed the proof
with apply add_left_cancel h or exact add_left_cancel h.
Remember that multiplication is not assumed to be commutative, so the following theorem also requires some work.

theorem zero_mul (a : R) : 0 * a = 0 :=
sorry

By now, you should also be able replace each sorry in the next exercise with a proof, still using only facts about rings
that we have established in this section.

theorem neg_eq_of_add_eq_zero {a b : R} (h : a + b = 0) : -a = b :=
sorry

theorem eq_neg_of_add_eq_zero {a b : R} (h : a + b = 0) : a = -b :=
sorry

theorem neg_zero : (-0 : R) = 0 :=
begin

apply neg_eq_of_add_eq_zero,
rw add_zero

end

(continues on next page)
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(continued from previous page)
theorem neg_neg (a : R) : -(-a) = a :=
sorry

We had to use the annotation (-0 : R) instead of 0 in the third theorem because without specifying R it is impossible
for Lean to infer which 0 we have in mind, and by default it would be interpreted as a natural number.
In Lean, subtraction in a ring is provably equal to addition of the additive inverse.

example (a b : R) : a - b = a + -b :=
sub_eq_add_neg a b

On the real numbers, it is defined that way:

example (a b : R) : a - b = a + -b :=
rfl

example (a b : R) : a - b = a + -b :=
by reflexivity

The proof term rfl is short for reflexivity. Presenting it as a proof of a - b = a + -b forces Lean to
unfold the definition and recognize both sides as being the same. The reflexivity tactic, which can be abbreviated
as refl, does the same. This is an instance of what is known as a definitional equality in Lean’s underlying logic. This
means that not only can one rewrite with sub_eq_add_neg to replace a - b = a + -b, but in some contexts,
when dealing with the integers, you can use the two sides of the equation interchangeably. For example, you now have
enough information to prove the theorem self_sub from the last section:

theorem self_sub (a : R) : a - a = 0 :=
sorry

Show that you can prove this using rw, but if you replace the arbitrary ring R by the real numbers, you can also prove it
using either apply or exact.
For another example of definitional equality, Lean knows that 1 + 1 = 2 holds in any ring. With a bit of effort, you
can use that to prove the theorem two_mul from the last section:

lemma one_add_one_eq_two : 1 + 1 = (2 : R) :=
by refl

theorem two_mul (a : R) : 2 * a = a + a :=
sorry

We close this section by noting that some of the facts about addition and negation that we established above do not need
the full strength of the ring axioms, or even commutativity of addition. The weaker notion of a group can be axiomatized
as follows:

import algebra.group

variables (A : Type*) [add_group A]

#check (add_assoc : ∀ a b c : A, a + b + c = a + (b + c))
#check (zero_add : ∀ a : A, 0 + a = a)
#check (add_left_neg : ∀ a : A, -a + a = 0)

It is conventional to use additive notation when the group operation is commutative, and multiplicative notation oth-
erwise. So Lean defines a multiplicative version as well as the additive version (and also their abelian variants,
add_comm_group and comm_group).
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variables (G : Type*) [group G]

#check (mul_assoc : ∀ a b c : G, a * b * c = a * (b * c))
#check (one_mul : ∀ a : G, 1 * a = a)
#check (mul_left_inv : ∀ a : G, a ¹ * a = 1)

If you are feeling cocky, try proving the following facts about groups, using only these axioms. You will need to prove a
number of helper lemmas along the way. The proofs we have carried out in this section provide some hints.

variables {G : Type*} [group G]

#check (mul_assoc : ∀ a b c : G, a * b * c = a * (b * c))
#check (one_mul : ∀ a : G, 1 * a = a)
#check (mul_left_inv : ∀ a : G, a ¹ * a = 1)

namespace my_group

theorem mul_right_inv (a : G) : a * a ¹ = 1 :=
sorry

theorem mul_one (a : G) : a * 1 = a :=
sorry

theorem mul_inv_rev (a b : G) : (a * b) ¹ = b ¹ * a ¹ :=
sorry

end my_group

Explicitly invoking those lemmas is tedious, so mathlib provides tactics similar to ring in order to cover most uses: group
is for non-commutative multiplicative groups, abel for abelian additive groups, and noncomm_ring for non-commutative
groups. It may seem odd that the algebraic structures are called ring and comm_ring while the tactics are named non-
comm_ring and ring. This is partly for historical reasons, but also for the convenience of using a shorter name for the
tactic that deals with commutative rings, since it is used more often.

2.3 Using Theorems and Lemmas

Rewriting is great for proving equations, but what about other sorts of theorems? For example, how can we prove an
inequality, like the fact that a+ eb ≤ a+ ec holds whenever b ≤ c? We have already seen that theorems can be applied
to arguments and hypotheses, and that the apply and exact tactics can be used to solve goals. In this section, we will
make good use of these tools.
Consider the library theorems le_refl and le_trans:

import data.real.basic

variables a b c : R

#check (le_refl : ∀ a : R, a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)

As we explain in more detail in Section 3.1, the implicit parentheses in the statement of le_trans associate to the
right, so it should be interpreted as a ≤ b → (b ≤ c → a ≤ c). The library designers have set the arguments
to le_trans implicit, so that Lean will not let you provide them explicitly (unless you really insist, as we will discuss
later). Rather, it expects to infer them from the context in which they are used. For example, when hypotheses h : a
≤ b and h' : b ≤ c are in the context, all the following work:
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variables a b c : R
variables (h : a ≤ b) (h' : b ≤ c)

#check (le_refl : ∀ a : real, a ≤ a)
#check (le_refl a : a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
#check (le_trans h : b ≤ c → a ≤ c)
#check (le_trans h h' : a ≤ c)

The apply tactic takes a proof of a general statement or implication, tries to match the conclusion with the current goal,
and leaves the hypotheses, if any, as new goals. If the given proof matches the goal exactly (modulo definitional equality),
you can use the exact tactic instead of apply. So, all of these work:

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z :=
begin

apply le_trans,
{ apply h0 },
apply h1

end

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z :=
begin

apply le_trans h0,
apply h1

end

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z :=
by exact le_trans h0 h1

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z :=
le_trans h0 h1

example (x : R) : x ≤ x :=
by apply le_refl

example (x : R) : x ≤ x :=
by exact le_refl x

example (x : R) : x ≤ x :=
le_refl x

In the first example, applying le_trans creates two goals, and we use the curly braces to enclose the proof of the first
one. In the fourth example and in the last example, we avoid going into tactic mode entirely: le_trans h0 h1 and
le_refl x are the proof terms we need.
Here are a few more library theorems:

#check (le_refl : ∀ a, a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
#check (lt_of_le_of_lt : a ≤ b → b < c → a < c)
#check (lt_of_lt_of_le : a < b → b ≤ c → a < c)
#check (lt_trans : a < b → b < c → a < c)

Use them together with apply and exact to prove the following:

example (a b c d e : R) (h0 : a ≤ b) (h1 : b < c) (h2 : c ≤ d)
(h3 : d < e) :

(continues on next page)
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(continued from previous page)
a < e :=

sorry

In fact, Lean has a tactic that does this sort of thing automatically:

example (a b c d e : R) (h0 : a ≤ b) (h1 : b < c) (h2 : c ≤ d)
(h3 : d < e) :

a < e :=
by linarith

The linarith tactic is designed to handle linear arithmetic.

example (h : 2 * a ≤ 3 * b) (h' : 1 ≤ a) (h'' : d = 2) :
d + a ≤ 5 * b :=

by linarith

In addition to equations and inequalities in the context, linarith will use additional inequalities that you pass as
arguments. In the next example, exp_le_exp.mpr h' is a proof of exp b ≤ exp c, as we will explain in a
moment. Notice that, in Lean, we write f x to denote the application of a function f to the argument x, exactly the same
way we write h x to denote the result of applying a fact or theorem h to the argument x. Parentheses are only needed
for compound arguments, as in f (x + y). Without the parentheses, f x + y would be parsed as (f x) + y.

example (h : 1 ≤ a) (h' : b ≤ c) :
2 + a + exp b ≤ 3 * a + exp c :=

by linarith [exp_le_exp.mpr h']

Here are some more theorems in the library that can be used to establish inequalities on the real numbers.

import analysis.special_functions.exp_log

open real

variables a b c d : R

#check (exp_le_exp : exp a ≤ exp b ↔ a ≤ b)
#check (exp_lt_exp : exp a < exp b ↔ a < b)
#check (log_le_log : 0 < a → 0 < b → (log a ≤ log b ↔ a ≤ b))
#check (log_lt_log : 0 < a → a < b → log a < log b)
#check (add_le_add : a ≤ b → c ≤ d → a + c ≤ b + d)
#check (add_lt_add_of_le_of_lt : a ≤ b → c < d → a + c < b + d)
#check (add_lt_add_of_lt_of_le : a < b → c ≤ d → a + c < b + d)
#check (add_nonneg : 0 ≤ a → 0 ≤ b → 0 ≤ a + b)
#check (add_pos : 0 < a → 0 < b → 0 < a + b)
#check (add_pos_of_pos_of_nonneg : 0 < a → 0 ≤ b → 0 < a + b)
#check (exp_pos : ∀ a, 0 < exp a)

Some of the theorems, exp_le_exp, exp_lt_exp, and log_le_log use a bi-implication, which represents the
phrase “if and only if.” (You can type it in VS Code with \lr of \iff). We will discuss this connective in greater detail
in the next chapter. Such a theorem can be used with rw to rewrite a goal to an equivalent one:

example (a b : R) (h : a ≤ b) : exp a ≤ exp b :=
begin

rw exp_le_exp,
exact h

end
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In this section, however, we will use the fact that if h : A ↔ B is such an equivalence, then h.mp establishes the
forward direction, A → B, and h.mpr establishes the reverse direction, B → A. Here, mp stands for “modus ponens”
and mpr stands for “modus ponens reverse.” You can also use h.1 and h.2 for h.mp and h.mpr, respectively, if you
prefer. Thus the following proof works:

example (h0 : a ≤ b) (h1 : c < d) : a + exp c + e < b + exp d + e :=
begin

apply add_lt_add_of_lt_of_le,
{ apply add_lt_add_of_le_of_lt h0,
apply exp_lt_exp.mpr h1 },

apply le_refl
end

The first line, apply add_lt_add_of_lt_of_le, creates two goals, and once again we use the curly brackets to
separate the proof of the first from the proof of the second.
Try the following examples on your own. The example in the middle shows you that the norm_num tactic can be used
to solve concrete numeric goals.

example (h0 : d ≤ e) : c + exp (a + d) ≤ c + exp (a + e) :=
begin

sorry
end

example : (0 : R) < 1 :=
by norm_num

example (h : a ≤ b) : log (1 + exp a) ≤ log (1 + exp b) :=
begin

have h0 : 0 < 1 + exp a,
{ sorry },
have h1 : 0 < 1 + exp b,
{ sorry },
apply (log_le_log h0 h1).mpr,
sorry

end

From these examples, it should be clear that being able to find the library theorems you need constitutes an important part
of formalization. There are a number of strategies you can use:

• You can browse mathlib in its GitHub repository.
• You can use the API documentation on the mathlib web pages.
• You can rely on mathlib naming conventions and tab completion in the editor to guess a theorem name. In Lean, a
theorem named A_of_B_of_C establishes something of the form A from hypotheses of the form B and C, where
A, B, and C approximate the way we might read the goals out loud. So a theorem establishing something like x +
y ≤ ... will probably start with add_le. Typing add_le and hitting tab will give you some helpful choices.

• If you right-click on an existing theorem name in VS Code, the editor will show a menu with the option to jump to
the file where the theorem is defined, and you can find similar theorems nearby.

• You can use the library_search tactic, which tries to find the relevant theorem in the library.

import data.real.basic
import tactic

example (a : R) : 0 ≤ a^2 :=
begin

(continues on next page)
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(continued from previous page)
-- library_search,
exact pow_two_nonneg a

end

To try out library_search in this example, delete the exact command and uncomment the previous line. Using
these tricks, see if you can find what you need to do the next example:

example (h : a ≤ b) : c - exp b ≤ c - exp a :=
begin

sorry
end

Using the same tricks, confirm that linarith instead of library_search can also finish the job.
Here is another example of an inequality:

example : 2*a*b ≤ a^2 + b^2 :=
begin

have h : 0 ≤ a^2 - 2*a*b + b^2,
calc
a^2 - 2*a*b + b^2 = (a - b)^2 : by ring
... ≥ 0 : by apply pow_two_nonneg,

calc
2*a*b

= 2*a*b + 0 : by ring
... ≤ 2*a*b + (a^2 - 2*a*b + b^2) : add_le_add (le_refl _) h
... = a^2 + b^2 : by ring

end

Mathlib tends to put spaces around binary operations like * and ^, but in this example, the more compressed format
increases readability. There are a number of things worth noticing. First, an expression s ≥ t is definitionally equivalent
to t ≤ s. In principle, this means one should be able to use them interchangeably. But some of Lean’s automation does
not recognize the equivalence, so mathlib tends to favor ≤ over ≥. Second, we have used the ring tactic extensively.
It is a real timesaver! Finally, notice that in the second line of the second calc proof, instead of writing by exact
add_le_add (le_refl _) h, we can simply write the proof term add_le_add (le_refl _) h.
In fact, the only cleverness in the proof above is figuring out the hypothesis h. Once we have it, the second calculation
involves only linear arithmetic, and linarith can handle it:

example : 2*a*b ≤ a^2 + b^2 :=
begin

have h : 0 ≤ a^2 - 2*a*b + b^2,
calc
a^2 - 2*a*b + b^2 = (a - b)^2 : by ring
... ≥ 0 : by apply pow_two_nonneg,

linarith
end

How nice! We challenge you to use these ideas to prove the following theorem. You can use the theorem abs_le'.mpr.

example : abs (a*b) ≤ (a^2 + b^2) / 2 :=
sorry

#check abs_le'.mpr

If you managed to solve this, congratulations! You are well on your way to becoming a master formalizer.
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2.4 More on Order and Divisibility

The min function on the real numbers is uniquely characterized by the following three facts:

#check (min_le_left a b : min a b ≤ a)
#check (min_le_right a b : min a b ≤ b)
#check (le_min : c ≤ a → c ≤ b → c ≤ min a b)

Can you guess the names of the theorems that characterize max in a similar way?
Notice that we have to apply min to a pair of arguments a and b by writing min a b rather than min (a, b).
Formally, min is a function of type R → R → R. When we write a type like this with multiple arrows, the convention
is that the implicit parentheses associate to the right, so the type is interpreted as R → (R → R). The net effect is
that if a and b have type R then min a has type R → R and min a b has type R, so min acts like a function of two
arguments, as we expect. Handling multiple arguments in this way is known as currying, after the logician Haskell Curry.
The order of operations in Lean can also take some getting used to. Function application binds tighter than infix operations,
so the expression min a b + c is interpreted as (min a b) + c. With time, these conventions will become second
nature.
Using the theorem le_antisymm, we can show that two real numbers are equal if each is less than or equal to the other.
Using this and the facts above, we can show that min is commutative:

example : min a b = min b a :=
begin

apply le_antisymm,
{ show min a b ≤ min b a,
apply le_min,
{ apply min_le_right },
apply min_le_left },

{ show min b a ≤ min a b,
apply le_min,
{ apply min_le_right },
apply min_le_left }

end

Here we have used curly brackets to separate proofs of different goals. Our usage is inconsistent: at the outer level, we use
curly brackets and indentation for both goals, whereas for the nested proofs, we use curly brackets only until a single goal
remains. Both conventions are reasonable and useful. We also use the show tactic to structure the proof and indicate
what is being proved in each block. The proof still works without the show commands, but using them makes the proof
easier to read and maintain.
It may bother you that the the proof is repetitive. To foreshadow skills you will learn later on, we note that one way to
avoid the repetition is to state a local lemma and then use it:

example : min a b = min b a :=
begin

have h : ∀ x y, min x y ≤ min y x,
{ intros x y,
apply le_min,
apply min_le_right,
apply min_le_left },

apply le_antisymm, apply h, apply h
end

We will say more about the universal quantifier in Section 3.1, but suffice it to say here that the hypothesis h says that
the desired inequality holds for any x and y, and the intros tactic introduces an arbitrary x and y to establish the
conclusion. The first apply after le_antisymm implicitly uses h a b, whereas the second one uses h b a.
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Another solution is to use the repeat tactic, which applies a tactic (or a block) as many times as it can.

example : min a b = min b a :=
begin

apply le_antisymm,
repeat {
apply le_min,
apply min_le_right,
apply min_le_left }

end

In any case, whether or not you use these tricks, we encourage you to prove the following:

example : max a b = max b a :=
begin

sorry
end

example : min (min a b) c = min a (min b c) :=
sorry

Of course, you are welcome to prove the associativity of max as well.
It is an interesting fact that min distributes over max the way that multiplication distributes over addition, and vice-versa.
In other words, on the real numbers, we have the identity min a (max b c) ≤ max (min a b) (min a
c) as well as the corresponding version with max and min switched. But in the next section we will see that this does
not follow from the transitivity and reflexivity of≤ and the characterizing properties of min and max enumerated above.
We need to use the fact that≤ on the real numbers is a total order, which is to say, it satisfies ∀ x y, x ≤ y ∨ y ≤
x. Here the disjunction symbol, ∨, represents “or”. In the first case, we have min x y = x, and in the second case,
we have min x y = y. We will learn how to reason by cases in Section 3.5, but for now we will stick to examples that
don’t require the case split.
Here is one such example:

lemma aux : min a b + c ≤ min (a + c) (b + c) :=
begin

sorry
end

example : min a b + c = min (a + c) (b + c) :=
begin

sorry
end

It is clear that aux provides one of the two inequalities needed to prove the equality, but applying it to suitable values
yields the other direction as well. As a hint, you can use the theorem add_neg_cancel_right and the linarith
tactic.
Lean’s naming convention is made manifest in the library’s name for the triangle inequality:

#check (abs_add : ∀ a b : R, abs (a + b) ≤ abs a + abs b)

Use it to prove the following variant:

example : abs a - abs b ≤ abs (a - b) :=
begin

sorry
end
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See if you can do this in three lines or less. You can use the theorem sub_add_cancel.
Another important relation that we will make use of in the sections to come is the divisibility relation on the natural
numbers, x | y. Be careful: the divisibility symbol is not the ordinary bar on your keyboard. Rather, it is a unicode
character obtained by typing \| in VS Code. By convention, mathlib uses dvd to refer to it in theorem names.

import data.nat.gcd

variables x y z : N

example (h0 : x | y) (h1 : y | z) : x | z :=
dvd_trans h0 h1

example : x | y * x * z :=
begin

apply dvd_mul_of_dvd_left,
apply dvd_mul_left

end

example : x | x^2 :=
by apply dvd_mul_right

In the last example, the exponent is a natural number, and applying dvd_mul_right forces Lean to expand the defi-
nition of x^2 to x^1 * x. See if you can guess the names of the theorems you need to prove the following:

import data.nat.gcd

variables w x y z : N

example (h : x | w) : x | y * (x * z) + x^2 + w^2 :=
begin

sorry
end

With respect to divisibility, the greatest common divisor, gcd, and least common multiple, lcm, are analogous to min
and max. Since every number divides 0, 0 is really the greatest element with respect to divisibility:

import data.nat.gcd

open nat

variables n : N

#check (gcd_zero_right n : gcd n 0 = n)
#check (gcd_zero_left n : gcd 0 n = n)
#check (lcm_zero_right n : lcm n 0 = 0)
#check (lcm_zero_left n : lcm 0 n = 0)

The functions gcd and lcm for natural numbers are in the nat namespace, which means that the full identifiers are
nat.gcd and nat.lcm. Similarly, the names of the theorems listed are prefixed by nat. The command open nat
opens the namespace, allowing us to use the shorter names.
See if you can guess the names of the theorems you will need to prove the following:

example : gcd m n = gcd n m :=
begin

sorry
end
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2.5 Proving Facts about Algebraic Structures

In Section 2.2, we saw that many common identities governing the real numbers hold in more general classes of algebraic
structures, such as commutative rings. We can use any axioms we want to describe an algebraic structure, not just
equations. For example, a partial order consists of a set with a binary relation that is reflexive and transitive, like ≤ on
the real numbers. Lean knows about partial orders:

variables {α : Type*} [partial_order α]
variables x y z : α

#check x ≤ y
#check (le_refl x : x ≤ x)
#check (le_trans : x ≤ y → y ≤ z → x ≤ z)

Here we are adopting the mathlib convention of using letters like α, β, and γ (entered as \a, \b, and \g) for arbitrary
types. The library often uses letters like R and G for the carries of algebraic structures like rings and groups, respectively,
but in general Greek letters are used for types, especially when there is little or no structure associated with them.
Associated to any partial order, ≤, there is also a strict partial order, <, which acts somewhat like < on the real numbers.
Saying that x is less than y in this order is equivalent to saying that it is less-than-or-equal to y and not equal to y.

#check x < y
#check (lt_irrefl x : ¬ x < x)
#check (lt_trans : x < y → y < z → x < z)
#check (lt_of_le_of_lt : x ≤ y → y < z → x < z)
#check (lt_of_lt_of_le : x < y → y ≤ z → x < z)

example : x < y ↔ x ≤ y ∧ x ̸= y :=
lt_iff_le_and_ne

In this example, the symbol ∧ stands for “and,” the symbol ¬ stands for “not,” and x 6= y abbreviates ¬ (x = y). In
Chapter 3, you will learn how to use these logical connectives to prove that < has the properties indicated.
A lattice is a structure that extends a partial order with operations ⊓ and ⊔ that are analogous to min and max on the real
numbers:

import order.lattice

variables {α : Type*} [lattice α]
variables x y z : α

#check x ⊓ y
#check (inf_le_left : x ⊓ y ≤ x)
#check (inf_le_right : x ⊓ y ≤ y)
#check (le_inf : z ≤ x → z ≤ y → z ≤ x ⊓ y)

#check x ⊔ y
#check (le_sup_left : x ≤ x ⊔ y)
#check (le_sup_right: y ≤ x ⊔ y)
#check (sup_le : x ≤ z → y ≤ z → x ⊔ y ≤ z)

The characterizations of ⊓ and ⊔ justify calling them the greatest lower bound and least upper bound, respectively. You
can type them in VS code using \glb and \lub. The symbols are also often called then infimum and the supremum,
and mathlib refers to them as inf and sup in theorem names. To further complicate matters, they are also often called
meet and join. Therefore, if you work with lattices, you have to keep the following dictionary in mind:

• ⊓ is the greatest lower bound, infimum, or meet.
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• ⊔ is the least upper bound, supremum, or join.
Some instances of lattices include:

• min and max on any total order, such as the integers or real numbers with ≤
• ∩ and ∪ on the collection of subsets of some domain, with the ordering ⊆
• ∧ and ∨ on boolean truth values, with ordering x ≤ y if either x is false or y is true
• gcd and lcm on the natural numbers (or positive natural numbers), with the divisibility ordering, |
• the collection of linear subspaces of a vector space, where the greatest lower bound is given by the intersection, the
least upper bound is given by the sum of the two spaces, and the ordering is inclusion

• the collection of topologies on a set (or, in Lean, a type), where the greatest lower bound of two topologies consists
of the topology that is generated by their union, the least upper bound is their intersection, and the ordering is
reverse inclusion

You can check that, as with min / max and gcd / lcm, you can prove the commutativity and associativity of the infimum
and supremum using only their characterizing axioms, together with le_refl and le_trans.

example : x ⊓ y = y ⊓ x := sorry
example : x ⊓ y ⊓ z = x ⊓ (y ⊓ z) := sorry
example : x ⊔ y = y ⊔ x := sorry
example : x ⊔ y ⊔ z = x ⊔ (y ⊔ z) := sorry

You can find these theorems in the mathlib as inf_comm, inf_assoc, sup_comm, and sup_assoc, respectively.
Another good exercise is to prove the absorption laws using only those axioms:

example : x ⊓ (x ⊔ y) = x := sorry
example : x ⊔ (x ⊓ y) = x := sorry

These can be found in mathlib with the names inf_sup_self and sup_inf_self.
A lattice that satisfies the additional identities x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) and x ⊔ (y ⊓ z) =
(x ⊔ y) ⊓ (x ⊔ z) is called a distributive lattice. Lean knows about these too:

import order.lattice

variables {α : Type*} [distrib_lattice α]
variables x y z : α

#check (inf_sup_left : x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z))
#check (inf_sup_right : (x ⊔ y) ⊓ z = (x ⊓ z) ⊔ (y ⊓ z))
#check (sup_inf_left : x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z))
#check (sup_inf_right : (x ⊓ y) ⊔ z = (x ⊔ z) ⊓ (y ⊔ z))

The left and right versions are easily shown to be equivalent, given the commutativity of ⊓ and ⊔. It is a good exercise
to show that not every lattice is distributive by providing an explicit description of a nondistributive lattice with finitely
many elements. It is also a good exercise to show that in any lattice, either distributivity law implies the other:

import order.lattice

variables {α : Type*} [lattice α]
variables a b c : α

example (h : ∀ x y z : α, x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)) :
(a ⊔ b) ⊓ c = (a ⊓ c) ⊔ (b ⊓ c) :=

sorry

(continues on next page)
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example (h : ∀ x y z : α, x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)) :
(a ⊓ b) ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) :=

sorry

It is possible to combine axiomatic structures into larger ones. For example, an ordered ring consists of a ring together
with a partial order on the carrier satisfying additional axioms that say that the ring operations are compatible with the
order:

import algebra.ordered_ring

variables {R : Type*} [ordered_ring R]
variables a b c : R

#check (add_le_add_left : a ≤ b → ∀ c, c + a ≤ c + b)
#check (mul_pos : 0 < a → 0 < b → 0 < a * b)

Chapter 3 will provide the means to derive the following from mul_pos and the definition of <:

#check (mul_nonneg : 0 ≤ a → 0 ≤ b → 0 ≤ a * b)

It is then an extended exercise to show that many common facts used to reason about arithmetic and the ordering on the
real numbers hold generically for any ordered ring. Here are a couple of examples you can try, using only properties of
rings, partial orders, and the facts enumerated in the last two examples:

example : a ≤ b → 0 ≤ b - a := sorry

example : 0 ≤ b - a → a ≤ b := sorry

example (h : a ≤ b) (h' : 0 ≤ c) : a * c ≤ b * c := sorry

Finally, here is one last example. Ametric space consists of a set equipped with a notion of distance, dist x y, mapping
any pair of elements to a real number. The distance function is assumed to satisfy the following axioms:

import topology.metric_space.basic

variables {X : Type*} [metric_space X]
variables x y z : X

#check (dist_self x : dist x x = 0)
#check (dist_comm x y : dist x y = dist y x)
#check (dist_triangle x y z : dist x z ≤ dist x y + dist y z)

Having mastered this section, you can show that it follows from these axioms that distances are always nonnegative:

example (x y : X) : 0 ≤ dist x y := sorry

We recommend making use of the theorem nonneg_of_mul_nonneg_left. As you may have guessed, this theo-
rem is called dist_nonneg in mathlib.
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CHAPTER

THREE

LOGIC

In the last chapter, we dealt with equations, inequalities, and basic mathematical statements like “x divides y.” Complex
mathematical statements are built up from simple ones like these using logical terms like “and,” “or,” “not,” and “if …
then,” “every,” and “some.” In this chapter, we show you how to work with statements that are built up in this way.

3.1 Implication and the Universal Quantifier

Consider the statement after the #check:

#check ∀ x : R, 0 ≤ x → abs x = x

In words, we would say “for every real number x, if 0 ≤ x then the absolute value of x equals x”. We can also have
more complicated statements like:

#check ∀ x y ε : R,
0 < ε → ε ≤ 1 → abs x < ε → abs y < ε → abs (x * y) < ε

In words, we would say “for every x, y, and ε, if 0 < ε ≤ 1, the absolute value of x is less than ε, and the absolute
value of y is less than ε, then the absolute value of x * y is less than ε.” In Lean, in a sequence of implications there
are implicit parentheses grouped to the right. So the expression above means “if 0 < ε then if ε ≤ 1 then if abs x
< ε…” As a result, the expression says that all the assumptions together imply the conclusion.
You have already seen that even though the universal quantifier in this statement ranges over objects and the implication
arrows introduce hypotheses, Lean treats the two in very similar ways. In particular, if you have proved a theorem of that
form, you can apply it to objects and hypotheses in the same way:

lemma my_lemma : ∀ x y ε : R,
0 < ε → ε ≤ 1 → abs x < ε → abs y < ε → abs (x * y) < ε :=

sorry

section
variables a b δ : R
variables (h0 : 0 < δ) (h1 : δ ≤ 1)
variables (ha : abs a < δ) (hb : abs b < δ)

#check my_lemma a b δ
#check my_lemma a b δ h0 h1

#check my_lemma a b δ h0 h1 ha hb
end

You have also already seen that it is common in Lean to use curly brackets to make quantified variables implicit when
they can be inferred from subsequent hypotheses. When we do that, we can just apply a lemma to the hypotheses without
mentioning the objects.
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lemma my_lemma : ∀ {x y ε : R},
0 < ε → ε ≤ 1 → abs x < ε → abs y < ε → abs (x * y) < ε :=

sorry

section
variables a b δ : R
variables (h0 : 0 < δ) (h1 : δ ≤ 1)
variables (ha : abs a < δ) (hb : abs b < δ)

#check my_lemma h0 h1 ha hb
end

At this stage, you also know that if you use the apply tactic to apply my_lemma to a goal of the form abs (a * b)
< δ, you are left with new goals that require you to prove each of the hypotheses.
To prove a statement like this, use the intros tactic. Take a look at what it does in this example:

lemma my_lemma : ∀ {x y ε : R},
0 < ε → ε ≤ 1 → abs x < ε → abs y < ε → abs (x * y) < ε :=

begin
intros x y ε epos ele1 xlt ylt,
sorry

end

We can use any names we want for the universally quantified variables; they do not have to be x, y, and ε. Notice that we
have to introduce the variables even though they are marked implicit: making them implicit means that we leave them out
when we write an expression using my_lemma, but they are still an essential part of the statement that we are proving.
After the intros command, the goal is what it would have been at the start if we listed all the variables and hypotheses
before the colon, as we did in the last section. In a moment, we will see why it is sometimes necessary to introduce
variables and hypotheses after the proof begins.
To help you prove the lemma, we will start you off:

lemma my_lemma : ∀ {x y ε : R},
0 < ε → ε ≤ 1 → abs x < ε → abs y < ε → abs (x * y) < ε :=

begin
intros x y ε epos ele1 xlt ylt,
calc
abs (x * y) = abs x * abs y : sorry
... ≤ abs x * ε : sorry
... < 1 * ε : sorry
... = ε : sorry

end

Finish the proof using the theorems abs_mul, mul_le_mul, abs_nonneg, mul_lt_mul_right, and
one_mul. Remember that you can find theorems like these using tab completion. Remember also that you can use
.mp and .mpr or .1 and .2 to extract the two directions of an if-and-only-if statement.
Universal quantifiers are often hidden in definitions, and Lean will unfold definitions to expose them when necessary. For
example, let’s define two predicates, fn_ub f a and fn_lb f a, where f is a function from the real numbers to the
real numbers and a is a real number. The first says that a is an upper bound on the values of f, and the second says that
a is a lower bound on the values of f.

def fn_ub (f : R → R) (a : R) : Prop := ∀ x, f x ≤ a
def fn_lb (f : R → R) (a : R) : Prop := ∀ x, a ≤ f x

In the next example, λ x, f x + g x is a name for the function that maps x to f x + g x. Computer scientists
refer to this as “lambda abstraction,” whereas a mathematician might describe it as the function x 7→ f(x) + g(x).
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example (hfa : fn_ub f a) (hgb : fn_ub g b) :
fn_ub (λ x, f x + g x) (a + b) :=

begin
intro x,
dsimp,
apply add_le_add,
apply hfa,
apply hgb

end

Applying intro to the goal fn_ub (λ x, f x + g x) (a + b) forces Lean to unfold the definition of
fn_ub and introduce x for the universal quantifier. The goal is then (λ (x : R), f x + g x) x ≤ a +
b. But applying (λ x, f x + g x) to x should result in f x + g x, and the dsimp command performs that
simplification. (The “d” stands for “definitional.”) You can delete that command and the proof still works; Lean would
have to perform that contraction anyhow to make sense of the next apply. The dsimp command simply makes the goal
more readable and helps us figure out what to do next. Another option is to use the change tactic by writing change
f x + g x ≤ a + b. This helps make the proof more readable, and gives you more control over how the goal is
transformed.
The rest of the proof is routine. The last two apply commands force Lean to unfold the definitions of fn_ub in the
hypotheses. Try carrying out similar proofs of these:

example (hfa : fn_lb f a) (hgb : fn_lb g b) :
fn_lb (λ x, f x + g x) (a + b) :=

sorry

example (nnf : fn_lb f 0) (nng : fn_lb g 0) :
fn_lb (λ x, f x * g x) 0 :=

sorry

example (hfa : fn_ub f a) (hfb : fn_ub g b)
(nng : fn_lb g 0) (nna : 0 ≤ a) :

fn_ub (λ x, f x * g x) (a * b) :=
sorry

Even though we have defined fn_ub and fn_lb for functions from the reals to the reals, you should recognize that
the definitions and proofs are much more general. The definitions make sense for functions between any two types for
which there is a notion of order on the codomain. Checking the type of the theorem add_le_add shows that it holds
of any structure that is an “ordered additive commutative monoid”; the details of what that means don’t matter now, but
it is worth knowing that the natural numbers, integers, rationals, and real numbers are all instances. So if we prove the
theorem fn_ub_add at that level of generality, it will apply in all these instances.

import algebra.ordered_group

variables {α : Type*} {R : Type*} [ordered_cancel_add_comm_monoid R]

#check @add_le_add

def fn_ub (f : α → R) (a : R) : Prop := ∀ x, f x ≤ a

theorem fn_ub_add {f g : α → R} {a b : R}
(hfa : fn_ub f a) (hgb : fn_ub g b) :

fn_ub (λ x, f x + g x) (a + b) :=
λ x, add_le_add (hfa x) (hgb x)

You have already seen square brackets like these in Section Section 2.2, though we still haven’t explained what they mean.
For concreteness, we will stick to the real numbers for most of our examples, but it is worth knowing that mathlib contains
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definitions and theorems that work at a high level of generality.
For another example of a hidden universal quantifier, mathlib defines a predicate monotone, which says that a function
is nondecreasing in its arguments:

example (f : R → R) (h : monotone f) :
∀ {a b}, a ≤ b → f a ≤ f b := h

Proving statements aboutmonotonicity involves usingintros to introduce two variables, say, a andb, and the hypothesis
a ≤ b. To use a monotonicity hypothesis, you can apply it to suitable arguments and hypotheses, and then apply the
resulting expression to the goal. Or you can apply it to the goal and let Lean help you work backwards by displaying the
remaining hypotheses as new subgoals.

example (mf : monotone f) (mg : monotone g) :
monotone (λ x, f x + g x) :=

begin
intros a b aleb,
apply add_le_add,
apply mf aleb,
apply mg aleb

end

When a proof is this short, it is often convenient to give a proof term instead. To describe a proof that temporarily
introduces objects a and b and a hypothesis aleb, Lean uses the notation λ a b aleb, .... This is analogous
to the way that a lambda abstraction like λ x, x^2 describes a function by temporarily naming an object, x, and then
using it to describe a value. So the intros command in the previous proof corresponds to the lambda abstraction in the
next proof term. The apply commands then correspond to building the application of the theorem to its arguments.

example (mf : monotone f) (mg : monotone g) :
monotone (λ x, f x + g x) :=

λ a b aleb, add_le_add (mf aleb) (mg aleb)

Here is a useful trick: if you start writing the proof term λ a b aleb, _ using an underscore where the rest of the
expression should go, Lean will flag an error, indicating that it can’t guess the value of that expression. If you check the
Lean Goal window in VS Code or hover over the squiggly error marker, Lean will show you the goal that the remaining
expression has to solve.
Try proving these, with either tactics or proof terms:

example {c : R} (mf : monotone f) (nnc : 0 ≤ c) :
monotone (λ x, c * f x) :=

sorry

example (mf : monotone f) (mg : monotone g) :
monotone (λ x, f (g x)) :=

sorry

Here are some more examples. A function f from R to R is said to be even if f(−x) = f(x) for every x, and odd if
f(−x) = −f(x) for every x. The following example defines these two notions formally and establishes one fact about
them. You can complete the proofs of the others.

def fn_even (f : R → R) : Prop := ∀ x, f x = f (-x)
def fn_odd (f : R → R) : Prop := ∀ x, f x = - f (-x)

example (ef : fn_even f) (eg : fn_even g) : fn_even (λ x, f x + g x) :=
begin

intro x,

(continues on next page)
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calc
(λ x, f x + g x) x = f x + g x : rfl

... = f (-x) + g (-x) : by rw [ef, eg]
end

example (of : fn_odd f) (og : fn_odd g) : fn_even (λ x, f x * g x) :=
sorry

example (ef : fn_even f) (og : fn_odd g) : fn_odd (λ x, f x * g x) :=
sorry

example (ef : fn_even f) (og : fn_odd g) : fn_even (λ x, f (g x)) :=
sorry

The first proof can be shortened using dsimp or change to get rid of the lambda. But you can check that the subsequent
rw won’t work unless we get rid of the lambda explicitly, because otherwise it cannot find the patterns f x and g x
in the expression. Contrary to some other tactics, rw operates on the syntactic level, it won’t unfold definitions or apply
reductions for you (it has a variant called erw that tries a little harder in this direction, but not much harder).
You can find implicit universal quantifiers all over the place, once you know how to spot them. Mathlib includes a good
library for rudimentary set theory. Lean’s logical foundation imposes the restriction that when we talk about sets, we are
always talking about sets of elements of some type. If x has type α and s has type set α, then x ∈ s is a proposition
that asserts that x is an element of s. If s and t are of type set α, then the subset relation s ⊆ t is defined to mean
∀ {x : α}, x ∈ s → x ∈ t. The variable in the quantifier is marked implicit so that given h : s ⊆ t and
h' : x ∈ s, we can write h h' as justification for x ∈ t. The following example provides a tactic proof and a
proof term justifying the reflexivity of the subset relation, and asks you to do the same for transitivity.

variables {α : Type*} (r s t : set α)

example : s ⊆ s :=
by { intros x xs, exact xs }

theorem subset.refl : s ⊆ s := λ x xs, xs

example : r ⊆ s → s ⊆ t → r ⊆ t :=
begin

sorry
end

theorem subset.trans : r ⊆ s → s ⊆ t → r ⊆ t :=
sorry

Just as we defined fn_ub for functions, we can define set_ub s a to mean that a is an upper bound on the set s,
assuming s is a set of elements of some type that has an order associated with it. In the next example, we ask you to
prove that if a is a bound on s and a ≤ b, then b is a bound on s as well.

variables {α : Type*} [partial_order α]
variables (s : set α) (a b : α)

def set_ub (s : set α) (a : α) := ∀ x, x ∈ s → x ≤ a

example (h : set_ub s a) (h' : a ≤ b) : set_ub s b :=
sorry

We close this section with one last important example. A function f is said to be injective if for every x1 and x2, if
f(x1) = f(x2) then x1 = x2. Mathlib defines function.injective f with x1 and x2 implicit. The next
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example shows that, on the real numbers, any function that adds a constant is injective. We then ask you to show that
multiplication by a nonzero constant is also injective.

open function

example (c : R) : injective (λ x, x + c) :=
begin

intros x1 x2 h',
exact (add_left_inj c).mp h',

end

example {c : R} (h : c ̸= 0) : injective (λ x, c * x) :=
sorry

Finally, show that the composition of two injective functions is injective:

variables {α : Type*} {β : Type*} {γ : Type*}
variables {g : β → γ} {f : α → β}

example (injg : injective g) (injf : injective f) :
injective (λ x, g (f x)) :=

begin
sorry

end

3.2 The Existential Quantifier

The existential quantifier, which can be entered as \ex in VS Code, is used to represent the phrase “there exists.” The
formal expression ∃ x : R, 2 < x ∧ x < 3 in Lean says that there is a real number between 2 and 3. (We will
discuss the conjunction symbol, ∧, below.) The canonical way to prove such a statement is to exhibit a real number and
show that it has the stated property. The number 2.5, which we can enter as 5 / 2 or (5 : R) / 2 when Lean
cannot infer from context that we have the real numbers in mind, has the required property, and the norm_num tactic
can prove that it meets the description.
There are a few ways we can put the information together. Given a goal that begins with an existential quantifier, the use
tactic is used to provide the object, leaving the goal of proving the property.

import data.real.basic

example : ∃ x : R, 2 < x ∧ x < 3 :=
begin

use 5 / 2,
norm_num

end

Alternatively, we can use Lean’s anonyomous constructor notation to construct the proof.

example : ∃ x : R, 2 < x ∧ x < 3 :=
begin

have h : 2 < (5 : R) / 2 ∧ (5 : R) / 2 < 3,
by norm_num,

exact ⟨5 / 2, h⟩
end

The left and right angle brackets, which can be entered as \< and \> respectively, tell Lean to put together the given data
using whatever construction is appropriate for the current goal. We can use the notation without going first into tactic
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mode:

example : ∃ x : R, 2 < x ∧ x < 3 :=
⟨5 / 2, by norm_num⟩

So now we know how to prove an exists statement. But how do we use one? If we know that there exists an object with
a certain property, we should be able to give a name to an arbitrary one and reason about it. For example, remember the
predicates fn_ub f a and fn_lb f a from the last section, which say that a is an upper bound or lower bound on
f, respectively. We can use the existential quantifier to say that “f is bounded” without specifying the bound:

def fn_ub (f : R → R) (a : R) : Prop := ∀ x, f x ≤ a
def fn_lb (f : R → R) (a : R) : Prop := ∀ x, a ≤ f x

def fn_has_ub (f : R → R) := ∃ a, fn_ub f a
def fn_has_lb (f : R → R) := ∃ a, fn_lb f a

We can use the theorem fn_ub_add from the last section to prove that if f and g have upper bounds, then so does λ
x, f x + g x.

example (ubf : fn_has_ub f) (ubg : fn_has_ub g) :
fn_has_ub (λ x, f x + g x) :=

begin
cases ubf with a ubfa,
cases ubg with b ubfb,
use a + b,
apply fn_ub_add ubfa ubfb

end

The cases tactic unpacks the information in the existential quantifier. Given the hypothesis ubf that there is an upper
bound for f, cases adds a new variable for an upper bound to the context, together with the hypothesis that it has the
given property. The with clause allows us to specify the names we want Lean to use. The goal is left unchanged; what
has changed is that we can now use the new object and the new hypothesis to prove the goal. This is a common pattern in
mathematics: we unpack objects whose existence is asserted or implied by some hypothesis, and then use it to establish
the existence of something else.
Try using this pattern to establish the following. You might find it useful to turn some of the examples from the last section
into named theorems, as we did with fn_ub_add, or you can insert the arguments directly into the proofs.

example (lbf : fn_has_lb f) (lbg : fn_has_lb g) :
fn_has_lb (λ x, f x + g x) :=

sorry

example {c : R} (ubf : fn_has_ub f) (h : c ≥ 0):
fn_has_ub (λ x, c * f x) :=

sorry

The task of unpacking information in a hypothesis is so important that Lean and mathlib provide a number of ways to do
it. A cousin of the cases tactic, rcases, is more flexible in that it allows us to unpack nested data. (The “r” stands
for “recursive.”) In the with clause for unpacking an existential quantifier, we name the object and the hypothesis by
presenting them as a pattern 〈a, h〉 that rcases then tries to match. The rintro tactic (which can also be written
rintros) is a combination of intros and rcases. These examples illustrate their use:

example (ubf : fn_has_ub f) (ubg : fn_has_ub g) :
fn_has_ub (λ x, f x + g x) :=

begin
rcases ubf with ⟨a, ubfa⟩,
rcases ubg with ⟨b, ubfb⟩,

(continues on next page)
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exact ⟨a + b, fn_ub_add ubfa ubfb⟩

end

example : fn_has_ub f → fn_has_ub g →
fn_has_ub (λ x, f x + g x) :=

begin
rintros ⟨a, ubfa⟩ ⟨b, ubfb⟩,
exact ⟨a + b, fn_ub_add ubfa ubfb⟩

end

In fact, Lean also supports a pattern-matching lambda in expressions and proof terms:

example : fn_has_ub f → fn_has_ub g →
fn_has_ub (λ x, f x + g x) :=

λ ⟨a, ubfa⟩ ⟨b, ubfb⟩, ⟨a + b, fn_ub_add ubfa ubfb⟩

These are power-user moves, and there is no harm in favoring the use of cases until you are more comfortable with
the existential quantifier. But we will come to learn that all of these tools, including cases, use, and the anonymous
constructors, are like Swiss army knives when it comes to theorem proving. They can be used for a wide range of purposes,
not just for unpacking exists statements.
To illustrate one way that rcases can be used, we prove an old mathematical chestnut: if two integers x and y can each
be written as a sum of two squares, then so can their product, x * y. In fact, the statement is true for any commutative
ring, not just the integers. In the next example, rcases unpacks two existential quantifiers at once. We then provide
the magic values needed to express x * y as a sum of squares as a list to the use statement, and we use ring to verify
that they work.

import tactic

variables {α : Type*} [comm_ring α]

def sum_of_squares (x : α) := ∃ a b, x = a^2 + b^2

theorem sum_of_squares_mul {x y : α}
(sosx : sum_of_squares x) (sosy : sum_of_squares y) :

sum_of_squares (x * y) :=
begin

rcases sosx with ⟨a, b, xeq⟩,
rcases sosy with ⟨c, d, yeq⟩,
rw [xeq, yeq],
use [a*c - b*d, a*d + b*c],
ring

end

This proof doesn’t provide much insight, but here is one way to motivate it. A Gaussian integer is a number of the form
a+ bi where a and b are integers and i =

√
−1. The norm of the Gaussian integer a+ bi is, by definition, a2 + b2. So

the norm of a Gaussian integer is a sum of squares, and any sum of squares can be expressed in this way. The theorem
above reflects the fact that norm of a product of Gaussian integers is the product of their norms: if x is the norm of a+ bi
and y in the norm of c+ di, then xy is the norm of (a+ bi)(c+ di). Our cryptic proof illustrates the fact that the proof
that is easiest to formalize isn’t always the most perspicuous one. In the chapters to come, we will provide you with the
means to define the Gaussian integers and use them to provide an alternative proof.
The pattern of unpacking an equation inside an existential quantifier and then using it to rewrite an expression in the goal
comes up often, so much so that the rcases tactic provides an abbreviation: if you use the keyword rfl in place of a
new identifier, rcases does the rewriting automatically (this trick doesn’t work with pattern-matching lambdas).
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theorem sum_of_squares_mul {x y : α}
(sosx : sum_of_squares x) (sosy : sum_of_squares y) :

sum_of_squares (x * y) :=
begin

rcases sosx with ⟨a, b, rfl⟩,
rcases sosy with ⟨c, d, rfl⟩,
use [a*c - b*d, a*d + b*c],
ring

end

As with the universal quantifier, you can find existential quantifiers hidden all over if you know how to spot them. For
example, divisibility is implicitly an “exists” statement.

example (divab : a | b) (divbc : b | c) : a | c :=
begin

cases divab with d beq,
cases divbc with e ceq,
rw [ceq, beq],
use (d * e), ring

end

And once again, this provides a nice setting for using rcases with rfl. Try it out in the proof above. It feels pretty
good!
Then try proving the following:

example (divab : a | b) (divac : a | c) : a | (b + c) :=
sorry

For another important example, a function f : α → β is said to be surjective if for every y in the codomain, β, there is an
x in the domain, α, such that f(x) = y. Notice that this statement includes both a universal and an existential quantifier,
which explains why the next example makes use of both intro and use.

example {c : R} : surjective (λ x, x + c) :=
begin

intro x,
use x - c,
dsimp, ring

end

Try this example yourself:

example {c : R} (h : c ̸= 0) : surjective (λ x, c * x) :=
sorry

You can use the theorem div_mul_cancel. The next example uses a surjectivity hypothesis by applying it to a suitable
value. Note that you can use cases with any expression, not just a hypothesis.

example {f : R → R} (h : surjective f) : ∃ x, (f x)^2 = 4 :=
begin

cases h 2 with x hx,
use x,
rw hx,
norm_num

end

See if you can use these methods to show that the composition of surjective functions is surjective.
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example (surjg : surjective g) (surjf : surjective f) :
surjective (λ x, g (f x)) :=

sorry

3.3 Negation

The symbol ¬ is meant to express negation, so ¬ x < y says that x is not less than y, ¬ x = y (or, equivalently, x 6=
y) says that x is not equal to y, and ¬ ∃ z, x < z ∧ z < y says that there does not exist a z strictly between x and
y. In Lean, the notation ¬ A abbreviates A → false, which you can think of as saying that A implies a contradiction.
Practically speaking, this means that you already know something about how to work with negations: you can prove ¬ A
by introducing a hypothesis h : A and proving false, and if you have h : ¬ A and h' : A, then applying h to
h' yields false.
To illustrate, consider the irreflexivity principle lt_irrefl for a strict order, which says that we have ¬ a < a for
every a. The asymmetry principle lt_asymm says that we have a < b → ¬ b < a. Let’s show that lt_asymm
follows from lt_irrefl.

example (h : a < b) : ¬ b < a :=
begin

intro h',
have : a < a,
from lt_trans h h',

apply lt_irrefl a this
end

This example introduces a couple of new tricks. First, when you use have without providing a label, Lean uses the name
this, providing a convenient way to refer back to it. Also, the from tactic is syntactic sugar for exact, providing a
nice way to justify a have with an explicit proof term. But what you should really be paying attention to in this proof is
the result of the intro tactic, which leaves a goal of false, and the fact that we eventually prove false by applying
lt_irrefl to a proof of a < a.
Here is another example, which uses the predicate fn_has_ub defined in the last section, which says that a function has
an upper bound.

example (h : ∀ a, ∃ x, f x > a) : ¬ fn_has_ub f :=
begin

intros fnub,
cases fnub with a fnuba,
cases h a with x hx,
have : f x ≤ a,
from fnuba x,

linarith
end

See if you can prove these in a similar way:

example (h : ∀ a, ∃ x, f x < a) : ¬ fn_has_lb f :=
sorry

example : ¬ fn_has_ub (λ x, x) :=
sorry

Mathlib offers a number of useful theorems for relating orders and negations:
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#check (not_le_of_gt : a > b → ¬ a ≤ b)
#check (not_lt_of_ge : a ≥ b → ¬ a < b)
#check (lt_of_not_ge : ¬ a ≥ b → a < b)
#check (le_of_not_gt : ¬ a > b → a ≤ b)

Recall the predicate monotone f, which says that f is nondecreasing. Use some of the theorems just enumerated to
prove the following:

example (h : monotone f) (h' : f a < f b) : a < b :=
sorry

example (h : a ≤ b) (h' : f b < f a) : ¬ monotone f :=
sorry

Remember that it is often convenient to use linarith when a goal follows from linear equations and inequalities that
in the context.
We can show that the first example in the last snippet cannot be proved if we replace < by ≤. Notice that we can prove
the negation of a universally quantified statement by giving a counterexample. Complete the proof.

example :
¬ ∀ {f : R → R}, monotone f → ∀ {a b}, f a ≤ f b → a ≤ b :=

begin
intro h,
let f := λ x : R, (0 : R),
have monof : monotone f,
{ sorry },
have h' : f 1 ≤ f 0,
from le_refl _,

sorry
end

This example introduces the let tactic, which adds a local definition to the context. If you put the cursor after the let
command, in the goal window you will see that the definition f : R → R := λ (x : R), 0 has been added
to the context. Lean will unfold the definition of f when it has to. In particular, when we prove f 1 ≤ f 0 with
le_refl, Lean reduces f 1 and f 0 to 0.
Use le_of_not_gt to prove the following:

example (x : R) (h : ∀ ε > 0, x ≤ ε) : x ≤ 0 :=
sorry

Implicit in many of the proofs we have just done is the fact that if P is any property, saying that there is nothing with
property P is the same as saying that everything fails to have property P, and saying that not everything has property P
is equivalent to saying that something fails to have property P. In other words, all four of the following implications are
valid (but one of them cannot be proved with what we explained so far):

variables {α : Type*} (P : α → Prop)

example (h : ¬ ∃ x, P x) : ∀ x, ¬ P x :=
sorry

example (h : ∀ x, ¬ P x) : ¬ ∃ x, P x :=
sorry

example (h : ¬ ∀ x, P x) : ∃ x, ¬ P x :=
sorry

(continues on next page)

3.3. Negation 35



Mathematics in Lean, Release 0.1

(continued from previous page)

example (h : ∃ x, ¬ P x) : ¬ ∀ x, P x :=
sorry

The first, second, and fourth are straightforward to prove using the methods you have already seen. We encourage you to
try it. The third is more difficult, however, because it concludes that an object exists from the fact that its nonexistence is
contradictory. This is an instance of classical mathematical reasoning, and, in general, you have to declare your intention
of using such reasoning by adding the command open_locale classical to your file. With that command, we
can use proof by contradiction to prove the third implication as follows.

import tactic

variables {α : Type*} (P : α → Prop)

open_locale classical

example (h : ¬ ∀ x, P x) : ∃ x, ¬ P x :=
begin

by_contradiction h',
apply h,
intro x,
show P x,
by_contradiction h'',
exact h' ⟨x, h''⟩

end

Make sure you understand how this works. The by_contradiction tactic (also abbreviated to by_contra) al-
lows us to prove a goal Q by assuming ¬ Q and deriving a contradiction. In fact, it is equivalent to using the equiv-
alence not_not : ¬ ¬ Q ↔ Q. Confirm that you can prove the forward direction of this equivalence using
by_contradiction, while the reverse direction follows from the ordinary rules for negation.

example (h : ¬ ¬ Q) : Q :=
sorry

example (h : Q) : ¬ ¬ Q :=
sorry

Use proof by contradiction to establish the following, which is the converse of one of the implications we proved above.
(Hint: use intro first.)

example (h : ¬ fn_has_ub f) : ∀ a, ∃ x, f x > a :=
sorry

It is often tedious to work with compound statements with a negation in front, and it is a common mathematical pattern to
replace such statements with equivalent forms in which the negation has been pushed inward. To facilitate this, mathlib
offers a push_neg tactic, which restates the goal in this way. The command push_neg at h restates the hypothesis
h.

example (h : ¬ ∀ a, ∃ x, f x > a) : fn_has_ub f :=
begin

push_neg at h,
exact h

end

example (h : ¬ fn_has_ub f) : ∀ a, ∃ x, f x > a :=

(continues on next page)
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begin

simp only [fn_has_ub, fn_ub] at h,
push_neg at h,
exact h

end

In the second example, we use Lean’s simplifier to expand the definitions of fn_has_ub and fn_ub. (We need to
use simp rather than rw to expand fn_ub, because it appears in the scope of a quantifier.) You can verify that in the
examples above with ¬ ∃ x, P x and ¬ ∀ x, P x, the push_neg tactic does the expected thing. Without even
knowing how to use the conjunction symbol, you should be able to use push_neg to prove the following:

example (h : ¬ monotone f) : ∃ x y, x ≤ y ∧ f y < f x :=
sorry

Mathlib also has a tactic, contrapose, which transforms a goal A → B to ¬ B → ¬ A. Similarly, given a goal
of proving B from hypothesis h : A, contrapose h leaves you with a goal of proving ¬ A from hypothesis ¬ B.
Using contrapose! instead of contrapose applies push_neg to the goal and the relevant hypothesis as well.

example (h : ¬ fn_has_ub f) : ∀ a, ∃ x, f x > a :=
begin

contrapose! h,
exact h

end

example (x : R) (h : ∀ ε > 0, x ≤ ε) : x ≤ 0 :=
begin

contrapose! h,
use x / 2,
split; linarith

end

We have not yet explained the split command or the use of the semicolon after it, but we will do that in the next
section.
We close this section with the principle of ex falso, which says that anything follows from a contradiction. In Lean, this
is represented by false.elim, which establishes false → P for any proposition P. This may seem like a strange
principle, but it comes up fairly often. We often prove a theorem by splitting on cases, and sometimes we can show that
one of the cases is contradictory. In that case, we need to assert that the contradiction establishes the goal so we can move
on to the next one. (We will see instances of reasoning by cases in Section 3.5.)
Lean provides a number of ways of closing a goal once a contradiction has been reached.

example (h : 0 < 0) : a > 37 :=
begin

exfalso,
apply lt_irrefl 0 h

end

example (h : 0 < 0) : a > 37 :=
absurd h (lt_irrefl 0)

example (h : 0 < 0) : a > 37 :=
begin

have h' : ¬ 0 < 0,
from lt_irrefl 0,

contradiction
end
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The exfalso tactic replaces the current goal with the goal of proving false. Given h : P and h' : ¬ P, the
term absurd h h' establishes any proposition. Finally, the contradiction tactic tries to close a goal by finding
a contradiction in the hypotheses, such as a pair of the form h : P and h' : ¬ P. Of course, in this example,
linarith also works.

3.4 Conjunction and Bi-implication

You have already seen that the conjunction symbol, ∧, is used to express “and.” The split tactic allows you to prove a
statement of the form A ∧ B by proving A and then proving B.

example {x y : R} (h0 : x ≤ y) (h1 : ¬ y ≤ x) : x ≤ y ∧ x ̸= y :=
begin

split,
{ assumption },
intro h,
apply h1,
rw h

end

In this example, the assumption tactic tells Lean to find an assumption that will solve the goal. Notice that the final
rw finishes the goal by applying the reflexivity of ≤. The following are alternative ways of carrying out the previous
examples using the anonymous constructor angle brackets. The first is a slick proof-term version of the previous proof,
which drops into tactic mode at the keyword by.

example {x y : R} (h0 : x ≤ y) (h1 : ¬ y ≤ x) : x ≤ y ∧ x ̸= y :=
⟨h0, λ h, h1 (by rw h)⟩

example {x y : R} (h0 : x ≤ y) (h1 : ¬ y ≤ x) : x ≤ y ∧ x ̸= y :=
begin

have h : x ̸= y,
{ contrapose! h1,
rw h1 },

exact ⟨h0, h⟩
end

Using a conjunction instead of proving one involves unpacking the proofs of the two parts. You can uses the cases tactic
for that, as well as rcases, rintros, or a pattern-matching lambda, all in a manner similar to the way they are used
with the existential quantifier.

example {x y : R} (h : x ≤ y ∧ x ̸= y) : ¬ y ≤ x :=
begin

cases h with h0 h1,
contrapose! h1,
exact le_antisymm h0 h1

end

example {x y : R} : x ≤ y ∧ x ̸= y → ¬ y ≤ x :=
begin

rintros ⟨h0, h1⟩ h',
exact h1 (le_antisymm h0 h')

end

example {x y : R} : x ≤ y ∧ x ̸= y → ¬ y ≤ x :=
λ ⟨h0, h1⟩ h', h1 (le_antisymm h0 h')
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In contrast to using an existential quantifier, you can also extract proofs of the two components of a hypothesis h : A
∧ B by writing h.left and h.right, or, equivalently, h.1 and h.2.

example {x y : R} (h : x ≤ y ∧ x ̸= y) : ¬ y ≤ x :=
begin

intro h',
apply h.right,
exact le_antisymm h.left h'

end

example {x y : R} (h : x ≤ y ∧ x ̸= y) : ¬ y ≤ x :=
λ h', h.right (le_antisymm h.left h')

Try using these techniques to come up with various ways of proving of the following:

example {m n : N} (h : m | n ∧ m ̸= n) :
m | n ∧ ¬ n | m :=

sorry

You can nest uses of ∃ and ∧ with anonymous constructors, rintros, and rcases.

example : ∃ x : R, 2 < x ∧ x < 4 :=
⟨5/2, by norm_num, by norm_num⟩

example (x y : R) : (∃ z : R, x < z ∧ z < y) → x < y :=
begin

rintros ⟨z, xltz, zlty⟩,
exact lt_trans xltz zlty

end

example (x y : R) : (∃ z : R, x < z ∧ z < y) → x < y :=
λ ⟨z, xltz, zlty⟩, lt_trans xltz zlty

You can also use the use tactic:

example : ∃ x : R, 2 < x ∧ x < 4 :=
begin

use 5 / 2,
split; norm_num

end

example : ∃ m n : N,
4 < m ∧ m < n ∧ n < 10 ∧ prime m ∧ prime n :=

begin
use [5, 7],
norm_num

end

example {x y : R} : x ≤ y ∧ x ̸= y → x ≤ y ∧ ¬ y ≤ x :=
begin

rintros ⟨h0, h1⟩,
use [h0, λ h', h1 (le_antisymm h0 h')]

end

In the first example, the semicolon after the split command tells Lean to use the norm_num tactic on both of the
goals that result.
In Lean, A ↔ B is not defined to be (A → B) ∧ (B → A), but it could have been, and it behaves roughly the same
way. You have already seen that you can write h.mp and h.mpr or h.1 and h.2 for the two directions of h : A ↔
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B. You can also use cases and friends. To prove an if-and-only-if statement, you can uses split or angle brackets,
just as you would if you were proving a conjunction.

example {x y : R} (h : x ≤ y) : ¬ y ≤ x ↔ x ̸= y :=
begin

split,
{ contrapose!,
rintro rfl,
reflexivity },

contrapose!,
exact le_antisymm h

end

example {x y : R} (h : x ≤ y) : ¬ y ≤ x ↔ x ̸= y :=
⟨λ h0 h1, h0 (by rw h1), λ h0 h1, h0 (le_antisymm h h1)⟩

The last proof term is inscrutable. Remember that you can use underscores while writing an expression like that to see
what Lean expects.
Try out the various techniques and gadgets you have just seen in order to prove the following:

example {x y : R} : x ≤ y ∧ ¬ y ≤ x ↔ x ≤ y ∧ x ̸= y :=
sorry

For a more interesting exercise, show that for any two real numbers x and y, x^2 + y^2 = 0 if and only if x = 0
and y = 0. We suggest proving an auxiliary lemma using linarith, pow_two_nonneg, and pow_eq_zero.

theorem aux {x y : R} (h : x^2 + y^2 = 0) : x = 0 :=
begin

have h' : x^2 = 0,
{ sorry },
exact pow_eq_zero h'

end

example (x y : R) : x^2 + y^2 = 0 ↔ x = 0 ∧ y = 0 :=
sorry

In Lean, bi-implication leads a double-life. You can treat it like a conjunction and use its two parts separately. But Lean
also knows that it is a reflexive, symmetric, and transitive relation between propositions, and you can also use it with calc
and rw. It is often convenient to rewrite a statement to an equivalent one. In the next example, we use abs_lt to replace
an expression of the form abs x < y by the equivalent expression - y < x ∧ x < y, and in the one after that we
use dvd_gcd_iff to replace an expression of the form m | gcd n k by the equivalent expression m | n ∧ m | k.

example (x y : R) : abs (x + 3) < 5 → -8 < x ∧ x < 2 :=
begin

rw abs_lt,
intro h,
split; linarith

end

example : 3 | gcd 6 15 :=
begin

rw dvd_gcd_iff,
split; norm_num

end

See if you can use rw with the theorem below to provide a short proof that negation is not a nondecreasing function.
(Note that push_neg won’t unfold definitions for you, so the rw monotone in the proof of the theorem is needed.)
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theorem not_monotone_iff {f : R → R}:
¬ monotone f ↔ ∃ x y, x ≤ y ∧ f x > f y :=

by { rw monotone, push_neg }

example : ¬ monotone (λ x : R, -x) :=
sorry

The remaining exercises in this section are designed to give you some more practice with conjunction and bi-implication.
Remember that a partial order is a binary relation that is transitive, reflexive, and antisymmetric. An even weaker notion
sometimes arises: a preorder is just a reflexive, transitive relation. For any pre-order ≤, Lean axiomatizes the associated
strict pre-order by a < b ↔ a ≤ b ∧ ¬ b ≤ a. Show that if ≤ is a partial order, then a < b is equivalent to a
≤ b ∧ a 6= b:

variables {α : Type*} [partial_order α]
variables a b : α

example : a < b ↔ a ≤ b ∧ a ̸= b :=
begin

rw lt_iff_le_not_le,
sorry

end

Beyond logical operations, you should not need anything more than le_refl and le_antisymm. Then show that
even in the case where ≤ is only assumed to be a preorder, we can prove that the strict order is irreflexive and transitive.
You do not need anything more than le_refl and le_trans. In the second example, for convenience, we use the
simplifier rather than rw to express < in terms of≤ and ¬. We will come back to the simplifier later, but here we are only
relying on the fact that it will use the indicated lemma repeatedly, even if it needs to be instantiated to different values.

variables {α : Type*} [preorder α]
variables a b c : α

example : ¬ a < a :=
begin

rw lt_iff_le_not_le,
sorry

end

example : a < b → b < c → a < c :=
begin

simp only [lt_iff_le_not_le],
sorry

end

3.5 Disjunction

The canonical way to prove a disjunction A ∨ B is to prove A or to prove B. The left tactic chooses A, and the right
tactic chooses B.

example (h : y > x^2) : y > 0 ∨ y < -1 :=
by { left, linarith [pow_two_nonneg x] }

example (h : -y > x^2 + 1) : y > 0 ∨ y < -1 :=
by { right, linarith [pow_two_nonneg x] }
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We cannot use an anonymous constructor to construct a proof of an “or” because Lean would have to guess which disjunct
we are trying to prove. Whenwewrite proof termswe can useor.inl andor.inr instead tomake the choice explicitly.
Here, inl is short for “introduction left” and inr is short for “introduction right.”

example (h : y > 0) : y > 0 ∨ y < -1 :=
or.inl h

example (h : y < -1) : y > 0 ∨ y < -1 :=
or.inr h

It may seem strange to prove a disjunction by proving one side or the other. In practice, which case holds usually depends
a case distinction that is implicit or explicit in the assumptions and the data. The cases tactic allows us to make use
of a hypothesis of the form A ∨ B. In contrast to the use of cases with conjunction or an existential quantifier, here
the cases tactic produces two goals. Both have the same conclusion, but in the first case, A is assumed to be true, and
in the second case, B is assumed to be true. In other words, as the name suggests, the cases tactic carries out a proof
by cases. As usual, we can tell Lean what names to use for the hypotheses. In the next example, we tell Lean to use the
name h on each branch.

example : x < abs y → x < y ∨ x < -y :=
begin

cases le_or_gt 0 y with h h,
{ rw abs_of_nonneg h,
intro h, left, exact h },

rw abs_of_neg h,
intro h, right, exact h

end

The absolute value function is defined in such a way that we can immediately prove that x ≥ 0 implies abs x = x
(this is the theorem abs_of_nonneg) and x < 0 implies abs x = -x (this is abs_of_neg). The expression
le_or_gt 0 x establishes 0 ≤ x ∨ x < 0, allowing us to split on those two cases. Try proving the triangle
inequality using the two first two theorems in the next snippet. They are given the same names they have in mathlib.

theorem le_abs_self : x ≤ abs x :=
sorry

theorem neg_le_abs_self : -x ≤ abs x :=
sorry

theorem abs_add : abs (x + y) ≤ abs x + abs y :=
sorry

In case you enjoyed these (pun intended) and you want more practice with disjunction, try these.

theorem lt_abs : x < abs y ↔ x < y ∨ x < -y :=
sorry

theorem abs_lt : abs x < y ↔ - y < x ∧ x < y :=
sorry

You can also use rcases and rintros with disjunctions. When these result in a genuine case split with multiple goals,
the patterns for each new goal are separated by a vertical bar.

example {x : R} (h : x ̸= 0) : x < 0 ∨ x > 0 :=
begin

rcases lt_trichotomy x 0 with xlt | xeq | xgt,
{ left, exact xlt },
{ contradiction },

(continues on next page)
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right, exact xgt

end

You can still nest patterns and use the rfl keyword to substitute equations:

example {m n k : N} (h : m | n ∨ m | k) : m | n * k :=
begin

rcases h with ⟨a, rfl⟩ | ⟨b, rfl⟩,
{ rw [mul_assoc],
apply dvd_mul_right },

rw [mul_comm, mul_assoc],
apply dvd_mul_right

end

See if you can prove the following with a single (long) line. Use rcases to unpack the hypotheses and split on cases,
and use a semicolon and linarith to solve each branch.

example {z : R} (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) :
z ≥ 0 :=

sorry

On the real numbers, an equation x * y = 0 tells us that x = 0 or y = 0. In mathlib, this fact is known as
eq_zero_or_eq_zero_of_mul_eq_zero, and it is another nice example of how a disjunction can arise. See if
you can use it to prove the following:

example (h : x^2 = 1) : x = 1 ∨ x = -1 :=
sorry

example (h : x^2 = y^2) : x = y ∨ x = -y :=
sorry

Remember that you can use the ring tactic to help with calculations.
In an arbitrary ring R, an element x such that xy = 0 for some nonzero y is called a left zero divisor, an element x such
that yx = 0 for some nonzero y is called a right zero divisor, and an element that is either a left or right zero divisor is
called simply a zero divisor. The theorem eq_zero_or_eq_zero_of_mul_eq_zero says that the real numbers
have no nontrivial zero divisors. A commutative ring with this property is called an integral domain. Your proofs of the
two theorems above should work equally well in any integral domain:

import algebra.group_power tactic

variables {R : Type*} [integral_domain R]

variables (x y : R)

example (h : x^2 = 1) : x = 1 ∨ x = -1 :=
sorry

example (h : x^2 = y^2) : x = y ∨ x = -y :=
sorry

In fact, if you are careful, you can prove the first theorem without using commutativity of multiplication. In that case, it
suffices to assume that R is a domain instead of an integral_domain.
Sometimes in a proof we want to split on cases depending on whether some statement is true or not. For any proposition
P, we can use classical.em P : P ∨ ¬ P. The name em is short for “excluded middle.”
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example (P : Prop) : ¬ ¬ P → P :=
begin

intro h,
cases classical.em P,
{ assumption },
contradiction

end

You can shorten classical.em to em by opening the classical namespace with the command open classi-
cal. Alternatively, you can use the by_cases tactic. The open_locale classical command guarantees that
Lean can make implicit use of the law of the excluded middle.

import tactic

open_locale classical

example (P : Prop) : ¬ ¬ P → P :=
begin

intro h,
by_cases h' : P,
{ assumption },
contradiction

end

Notice that the by_cases tactic lets you specify a label for the hypothesis that is introduced in each branch, in this case,
h' : P in one and h' : ¬ P in the other. If you leave out the label, Lean uses h by default. Try proving the
following equivalence, using by_cases to establish one direction.

example (P Q : Prop) : (P → Q) ↔ ¬ P ∨ Q :=
sorry

3.6 Sequences and Convergence

We now have enough skills at our disposal to do some real mathematics. In Lean, we can represent a sequence
s0, s1, s2, . . . of real numbers as a function s : N → R. Such a sequence is said to converge to a number a if
for every ε > 0 there is a point beyond which the sequence remains within ε of a, that is, there is a number N such that
for every n ≥ N , |sn − a| < ε. In Lean, we can render this as follows:

def converges_to (s : N → R) (a : R) :=
∀ ε > 0, ∃ N, ∀ n ≥ N, abs (s n - a) < ε

The notation ∀ ε > 0, ... is a convenient abbreviation for ∀ ε, ε > 0 → ..., and, similarly, ∀ n ≥ N,
... abbreviates ∀ n, n ≥ N → .... And remember that ε > 0, in turn, is defined as 0 < ε, and n ≥ N is
defined as N ≤ n.
In this section, we’ll establish some properties of convergence. But first, we will discuss three tactics for working with
equality that will prove useful. The first, the ext tactic, gives us a way of proving that two functions are equal. Let
f(x) = x+ 1 and g(x) = 1 + x be functions from reals to reals. Then, of course, f = g, because they return the same
value for every x. The ext tactic enables us to prove an equation between functions by proving that their values are the
same at all the values of their arguments.

example : (λ x y : R, (x + y)^2) = (λ x y : R, x^2 + 2*x*y + y^2) :=
by { ext, ring }
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We’ll see later that ext is actually more general, and also one can specify the name of the variables that appear. For
instance you can try to replace ext with ext u v in the above proof. The second tactic, the congr tactic, allows us
to prove an equation between two expressions by reconciling the parts that are different:

example (a b : R) : abs a = abs (a - b + b) :=
by { congr, ring }

Here the congr tactic peels off the abs on each side, leaving us to prove a = a - b + b.
Finally, the convert tactic is used to apply a theorem to a goal when the conclusion of the theorem doesn’t quite match.
For example, suppose we want to prove a < a * a from 1 < a. A theorem in the library, mul_lt_mul_right,
will let us prove 1 * a < a * a. One possibility is to work backwards and rewrite the goal so that it has that form.
Instead, the convert tactic lets us apply the theorem as it is, and leaves us with the task of proving the equations that
are needed to make the goal match.

example {a : R} (h : 1 < a) : a < a * a :=
begin

convert (mul_lt_mul_right _).2 h,
{ rw [one_mul] },
exact lt_trans zero_lt_one h

end

This example illustrates another useful trick: when we apply an expression with an underscore and Lean can’t fill it in for
us automatically, it simply leaves it for us as another goal.
The following shows that any constant sequence a, a, a, . . . converges.

theorem converges_to_const : converges_to (λ x : N, a) a :=
begin

intros ε εpos,
use 0,
intros n nge, dsimp,
rw [sub_self, abs_zero],
apply εpos

end

Lean has a tactic, simp, which can often save you the trouble of carrying out steps like rw [sub_self, abs_zero]
by hand. We will tell you more about it soon.
For a more interesting theorem, let’s show that if s converges to a and t converges to b, then λ n, s n + t n
converges to a + b. It is helpful to have a clear pen-and-paper proof in mind before you start writing a formal one.
Given ε greater than 0, the idea is to use the hypotheses to obtain an Ns such that beyond that point, s is within ε / 2
of a, and an Nt such that beyond that point, t is within ε / 2 of b. Then, whenever n is greater than or equal to the
maximum of Ns and Nt, the sequence λ n, s n + t n should be within ε of a + b. The following example begins
to implement this strategy. See if you can finish it off.

variables {s t : N → R} {a b : R}

theorem converges_to_add
(cs : converges_to s a) (ct : converges_to t b):

converges_to (λ n, s n + t n) (a + b) :=
begin

intros ε εpos, dsimp,
have ε2pos : 0 < ε / 2,
{ linarith },
cases cs (ε / 2) ε2pos with Ns hs,
cases ct (ε / 2) ε2pos with Nt ht,
use max Ns Nt,

(continues on next page)
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sorry

end

As hints, you can use le_of_max_le_left and le_of_max_le_right, and norm_num can prove ε / 2 +
ε / 2 = ε. Also, it is helpful to use the congr tactic to show that abs (s n + t n - (a + b)) is equal to
abs ((s n - a) + (t n - b)), since then you can use the triangle inequality. Notice that we marked all the
variables s, t, a, and b implicit because they can be inferred from the hypotheses.
Proving the same theorem with multiplication in place of addition is tricky. We will get there by proving some auxiliary
statements first. See if you can also finish off the next proof, which shows that if s converges to a, then λ n, c * s
n converges to c * a. It is helpful to split into cases depending on whether c is equal to zero or not. We have taken
care of the zero case, and we have left you to prove the result with the extra assumption that c is nonzero.

theorem converges_to_mul_const
{c : R} (cs : converges_to s a) :

converges_to (λ n, c * s n) (c * a) :=
begin

by_cases h : c = 0,
{ convert converges_to_const 0,
{ ext, rw [h, zero_mul] },
rw [h, zero_mul] },

have acpos : 0 < abs c,
from abs_pos.mpr h,

sorry
end

The next theorem is also independently interesting: it shows that a convergent sequence is eventually bounded in absolute
value. We have started you off; see if you can finish it.

theorem exists_abs_le_of_converges_to (cs : converges_to s a) :
∃ N b, ∀ n, N ≤ n → abs (s n) < b :=

begin
cases cs 1 zero_lt_one with N h,
use [N, abs a + 1],
sorry

end

In fact, the theorem could be strengthened to assert that there is a bound b that holds for all values of n. But this version
is strong enough for our purposes, and we will see at the end of this section that it holds more generally.
The next lemma is auxiliary: we prove that if s converges to a and t converges to 0, then λ n, s n * t n converges
to 0. To do so, we use the previous theorem to find a B that bounds s beyond some point N0. See if you can understand
the strategy we have outlined and finish the proof.

lemma aux (cs : converges_to s a) (ct : converges_to t 0) :
converges_to (λ n, s n * t n) 0 :=

begin
intros ε εpos, dsimp,
rcases exists_abs_le_of_converges_to cs with ⟨N0, B, h0⟩,
have Bpos : 0 < B,
from lt_of_le_of_lt (abs_nonneg _) (h0 N0 (le_refl _)),

have pos0 : ε / B > 0,
from div_pos εpos Bpos,

cases ct _ pos0 with N1 h1,
sorry

end
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If you have made it this far, congratulations! We are now within striking distance of our theorem. The following proof
finishes it off.

theorem converges_to_mul
(cs : converges_to s a) (ct : converges_to t b):

converges_to (λ n, s n * t n) (a * b) :=
begin

have h1 : converges_to (λ n, s n * (t n - b)) 0,
{ apply aux cs,
convert converges_to_add ct (converges_to_const (-b)),
ring },

convert (converges_to_add h1 (converges_to_mul_const b cs)),
{ ext, ring },
ring

end

For another challenging exercise, try filling out the following sketch of a proof that limits are unique. (If you are feeling
bold, you can delete the proof sketch and try proving it from scratch.)

theorem converges_to_unique {s : N → R} {a b : R}
(sa : converges_to s a) (sb : converges_to s b) :

a = b :=
begin

by_contradiction abne,
have : abs (a - b) > 0,
{ sorry },
let ε := abs (a - b) / 2,
have εpos : ε > 0,
{ change abs (a - b) / 2 > 0, linarith },
cases sa ε εpos with Na hNa,
cases sb ε εpos with Nb hNb,
let N := max Na Nb,
have absa : abs (s N - a) < ε,
{ sorry },
have absb : abs (s N - b) < ε,
{ sorry },
have : abs (a - b) < abs (a - b),
{ sorry },
exact lt_irrefl _ this

end

We close the section with the observation that our proofs can be generalized. For example, the only properties that we
have used of the natural numbers is that their structure carries a partial order with min and max. You can check that
everything still works if you replace N everywhere by any linear order α:

variables {α : Type*} [linear_order α]

def converges_to (s : α → R) (a : R) :=
∀ ε > 0, ∃ N, ∀ n ≥ N, abs (s n - a) < ε

In a later chapter, we will see that mathlib has mechanisms for dealing with convergence in vastly more general terms,
not only abstracting away particular features of the domain and codomain, but also abstracting over different types of
convergence.
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CHAPTER

FOUR

SETS AND FUNCTIONS

The vocabulary of sets, relations, and functions provides a uniform language for carrying out constructions in all the
branches of mathematics. Since functions and relations can be defined in terms of sets, axiomatic set theory can be used
as a foundation for mathematics.
Lean’s foundation is based instead on the primitive notion of a type, and it includes ways of defining functions between
types. Every expression in Lean has a type: there are natural numbers, real numbers, functions from reals to reals, groups,
vector spaces, and so on. Some expressions are types, which is to say, their type is Type. Lean and mathlib provide ways
of defining new types, and ways of defining objects of those types.
Conceptually, you can think of a type as just a set of objects. Requiring every object to have a type has some advantages.
For example, it makes it possible to overload notation like +, and it sometimes makes input less verbose because Lean
can infer a lot of information from an object’s type. The type system also enables Lean to flag errors when you apply a
function to the wrong number of arguments, or apply a function to arguments of the wrong type.
Lean’s library does define elementary set-theoretic notions. In contrast to set theory, in Lean a set is always a set of objects
of some type, such as a set natural numbers or a set of functions from real numbers to real numbers. The distinction
between types and set takes some getting used to, but this chapter will take you through the essentials.

4.1 Sets

If α is any type, the type set α consists of sets of elements of α. This type supports the usual set-theoretic operations
and relations. For example, s ⊆ t says that s is a subset of t, s ∩ t denotes the intersection of s and t, and s ∪
t denotes their union. The subset relation can be typed with \ss or \sub, intersection can be typed with \i or \cap,
and union can be typed with \un or \cup. The library also defines the set univ, which consists of all the elements of
type α, and the empty set, ∅, which can be typed as \empty. Given x : α and s : set α, the expression x ∈ s
says that x is a member of s. Theorems that mention set membership often include mem in their name. The expression
x /∈ s abbreviates ¬ x ∈ s. You can type ∈ as \in or \mem and /∈ as \notin.
One way to prove things about sets is to use rw or the simplifier to expand the definitions. In the second example below,
we use simp only to tell the simplifier to use only the list of identities we give it, and not its full database of identities.
Unlike rw, simp can perform simplifications inside a universal or existential quantifier. If you step through the proof,
you can see the effects of these commands.

import tactic

variable {α : Type*}
variables (s t u : set α)

open set

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=

(continues on next page)
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begin

rw [subset_def, inter_def, inter_def],
rw subset_def at h,
dsimp,
rintros x ⟨xs, xu⟩,
exact ⟨h _ xs, xu⟩,

end

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
begin

simp only [subset_def, mem_inter_eq] at *,
rintros x ⟨xs, xu⟩,
exact ⟨h _ xs, xu⟩,

end

In this example, we open the set namespace to have access to the shorter names for the theorems. But, in fact, we can
delete the calls to rw and simp entirely:

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
begin

intros x xsu,
exact ⟨h xsu.1, xsu.2⟩

end

What is going on here is known as definitional reduction: to make sense of the intros command and the anonymous
constructors Lean is forced to expand the definitions. The following examples also illustrate the phenomenon:

theorem foo (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
λ x ⟨xs, xu⟩, ⟨h xs, xu⟩

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
by exact λ x ⟨xs, xu⟩, ⟨h xs, xu⟩

Due to a quirk of how Lean processes its input, the first example fails if we replace theorem foo with example.
This illustrates the pitfalls of relying on definitional reduction too heavily. It is often convenient, but sometimes we have
to fall back on unfolding definitions manually.
To deal with unions, we can use set.union_def and set.mem_union. Since x ∈ s ∪ t unfolds to x ∈ s ∨
x ∈ t, we can also use the cases tactic to force a definitional reduction.

example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin

intros x hx,
have xs : x ∈ s := hx.1,
have xtu : x ∈ t ∪ u := hx.2,
cases xtu with xt xu,
{ left,
show x ∈ s ∩ t,
exact ⟨xs, xt⟩ },

right,
show x ∈ s ∩ u,
exact ⟨xs, xu⟩

end

Since intersection binds tighter than union, the use of parentheses in the expression (s ∩ t) ∪ (s ∩ u) is
unnecessary, but they make the meaning of the expression clearer. The following is a shorter proof of the same fact:
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example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin

rintros x ⟨xs, xt | xu⟩,
{ left, exact ⟨xs, xt⟩ },
right, exact ⟨xs, xu⟩

end

As an exercise, try proving the other inclusion:

example : (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u):=
sorry

It might help to know that when using rintros, sometimes we need to use parentheses around a disjunctive pattern h1
| h2 to get Lean to parse it correctly.
The library also defines set difference, s \ t, where the backslash is a special unicode character entered as \\. The
expression x ∈ s \ t expands to x ∈ s ∧ x /∈ t. (The /∈ can be entered as \notin.) It can be rewritten
manually using set.diff_eq and dsimp or set.mem_diff, but the following two proofs of the same inclusion
show how to avoid using them.

example : s \ t \ u ⊆ s \ (t ∪ u) :=
begin

intros x xstu,
have xs : x ∈ s := xstu.1.1,
have xnt : x /∈ t := xstu.1.2,
have xnu : x /∈ u := xstu.2,
split,
{ exact xs }, dsimp,
intro xtu, -- x ∈ t ∨ x ∈ u
cases xtu with xt xu,
{ show false, from xnt xt },
show false, from xnu xu

end

example : s \ t \ u ⊆ s \ (t ∪ u) :=
begin

rintros x ⟨⟨xs, xnt⟩, xnu⟩,
use xs,
rintros (xt | xu); contradiction

end

As an exercise, prove the reverse inclusion:

example : s \ (t ∪ u) ⊆ s \ t \ u :=
sorry

To prove that two sets are equal, it suffices to show that every element of one is an element of the other. This principle is
known as “extensionality,” and, unsurprisingly, the ext tactic is equipped to handle it.

example : s ∩ t = t ∩ s :=
begin

ext x,
simp only [mem_inter_eq],
split,
{ rintros ⟨xs, xt⟩, exact ⟨xt, xs⟩ },
rintros ⟨xt, xs⟩, exact ⟨xs, xt⟩

end
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Once again, deleting the line simp only [mem_inter_eq] does not harm the proof. In fact, if you like inscrutable
proof terms, the following one-line proof is for you:

example : s ∩ t = t ∩ s :=
set.ext $ λ x, ⟨λ ⟨xs, xt⟩, ⟨xt, xs⟩, λ ⟨xt, xs⟩, ⟨xs, xt⟩⟩

The dollar sign is a useful syntax: writing f $ ... is essentially the same as writing f (...), but it saves us the
trouble of having to close a set of parentheses at the end of a long expression. Here is an even shorter proof, using the
simplifier:

example : s ∩ t = t ∩ s :=
by ext x; simp [and.comm]

An alternative to using ext is to use the theorem subset.antisymm which allows us to prove an equation s = t
between sets by proving s ⊆ t and t ⊆ s.

example : s ∩ t = t ∩ s :=
begin

apply subset.antisymm,
{ rintros x ⟨xs, xt⟩, exact ⟨xt, xs⟩ },
rintros x ⟨xt, xs⟩, exact ⟨xs, xt⟩

end

Try finishing this proof term:

example : s ∩ t = t ∩ s :=
subset.antisymm sorry sorry

Remember that you can replace sorry by an underscore, and when you hover over it, Lean will show you what it expects
at that point.
Here are some set-theoretic identities you might enjoy proving:

example : s ∩ (s ∪ t) = s :=
sorry

example : s ∪ (s ∩ t) = s :=
sorry

example : (s \ t) ∪ t = s ∪ t :=
sorry

example : (s \ t) ∪ (t \ s) = (s ∪ t) \ (s ∩ t) :=
sorry

When it comes to representing sets, here is what is going on underneath the hood. In type theory, a property or predicate
on a type α is just a function P : α → Prop. This makes sense: given a : α, P a is just the proposition that P
holds of a. In the library, set α is defined to be α → Prop and x ∈ s is defined to be s x. In other words, sets
are really properties, treated as objects.
The library also defines set-builder notation. The expression { y | P y } unfolds to (λ y, P y), so x ∈ { y
| P y } reduces to P x. So we can turn the property of being even into the set of even numbers:

import data.set.basic data.nat.parity

open set nat

def evens : set N := {n | even n}

(continues on next page)
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def odds : set N := {n | ¬ even n}

example : evens ∪ odds = univ :=
begin

rw [evens, odds],
ext n,
simp,
apply classical.em

end

You should step through this proof and make sure you understand what is going on. Try deleting the line rw [evens,
odds] and confirm that the proof still works.
In fact, set-builder notation is used to define

• s ∩ t as {x | x ∈ s ∧ x ∈ t},
• s ∪ t as {x | x ∈ s ∨ x ∈ t},
• ∅ as {x | false}, and
• univ as {x | true}.

We often need to indicate the type of ∅ and univ explicitly, because Lean has trouble guessing which ones we mean.
The following examples show how Lean unfolds the last two definitions when needed. In the second one, trivial is
the canonical proof of true in the library.

example (x : N) (h : x ∈ (∅ : set N)) : false :=
h

example (x : N) : x ∈ (univ : set N) :=
trivial

As an exercise, prove the following inclusion. Use intro n to unfold the definition of subset, and use the simplifier to
reduce the set-theoretic constructions to logic. We also recommend using the theorems prime.eq_two_or_odd and
even_iff.

import data.nat.prime data.nat.parity tactic

open set nat

example : { n | prime n } ∩ { n | n > 2} ⊆ { n | ¬ even n } :=
sorry

Lean introduces the notation ∀ x ∈ s, ..., “for every x in s… ,” as an abbreviation for ∀ x, x ∈ s → ....
It also introduces the notation ∃ x ∈ s, ..., “there exists an x in s such that … .” These are sometimes known as
bounded quantifiers, because the construction serves to restrict their significance to the set s. As a result, theorems in the
library that make use of them often contain ball or bex in the name. The theorem bex_def asserts that ∃ x ∈ s,
... is equivalent to ∃ x, x ∈ s ∧ ..., but when they are used with rintros, use, and anonymous constructors,
these two expressions behave roughly the same. As a result, we usually don’t need to use bex_def to transform them
explicitly. Here is are some examples of how they are used:

variable (s : set N)

example (h0 : ∀ x ∈ s, ¬ even x) (h1 : ∀ x ∈ s, prime x) :
∀ x ∈ s, ¬ even x ∧ prime x :=

begin
intros x xs,

(continues on next page)
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split,
{ apply h0 x xs },
apply h1 x xs

end

example (h : ∃ x ∈ s, ¬ even x ∧ prime x) :
∃ x ∈ s, prime x :=

begin
rcases h with ⟨x, xs, _, prime_x⟩,
use [x, xs, prime_x]

end

See if you can prove these slight variations:

variables (s t : set N) (ssubt : s ⊆ t)

include ssubt

example (h0 : ∀ x ∈ t, ¬ even x) (h1 : ∀ x ∈ t, prime x) :
∀ x ∈ s, ¬ even x ∧ prime x :=

sorry

example (h : ∃ x ∈ s, ¬ even x ∧ prime x) :
∃ x ∈ t, prime x :=

sorry

The include command is needed because ssubt does not appear in the statement of the theorem. Lean does not look
inside tactic blocks when it decides what variables and hypotheses to include, so if you delete that line, you will not see
the hypothesis within a begin ... end proof. If you are proving theorems in a library, you can delimit the scope
of and include by putting it between section and end, so that later theorems do not include it as an unnecessary
hypothesis.
Indexed unions and intersections are another important set-theoretic construction. We can model a sequence
A0, A1, A2, . . . of sets of elements of α as a function A : N → set α, in which case ⋃ i, A i denotes
their union, and ⋂ i, A i denotes their intersection. There is nothing special about the natural numbers here, so N
can be replaced by any type I used to index the sets. The following illustrates their use.

variables α I : Type*
variables A B : I → set α
variable s : set α

example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) :=
begin

ext x,
simp only [mem_inter_eq, mem_Union],
split,
{ rintros ⟨xs, ⟨i, xAi⟩⟩,
exact ⟨i, xAi, xs⟩ },

rintros ⟨i, xAi, xs⟩,
exact ⟨xs, ⟨i, xAi⟩⟩

end

example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) :=
begin

ext x,
simp only [mem_inter_eq, mem_Inter],

(continues on next page)
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split,
{ intro h,
split,
{ intro i,

exact (h i).1 },
intro i,
exact (h i).2 },

rintros ⟨h1, h2⟩ i,
split,
{ exact h1 i },
exact h2 i

end

Parentheses are often needed with an indexed union or intersection because, as with the quantifiers, the scope of the
bound variable extends as far as it can.
Try proving the following identity. One direction requires classical logic! We recommend using by_cases xs : x
∈ s at an appropriate point in the proof.

open_locale classical

example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) :=
sorry

Mathlib also has bounded unions and intersections, which are analogous to the bounded quantifiers. You can unpack their
meaning with mem_bUnion_iff and mem_bInter_iff. As the following examples show, Lean’s simplifier carries
out these replacements as well.

def primes : set N := {x | prime x}

example : (⋃ p ∈ primes, {x | p^2 | x}) = {x | ∃ p ∈ primes, p^2 | x} :=
by { ext, rw mem_bUnion_iff, refl }

example : (⋃ p ∈ primes, {x | p^2 | x}) = {x | ∃ p ∈ primes, p^2 | x} :=
by { ext, simp }

example : (⋂ p ∈ primes, {x | ¬ p | x}) ⊆ {x | x < 2} :=
begin

intro x,
contrapose!,
simp,
apply exists_prime_and_dvd

end

Try solving the following example, which is similar. If you start typing eq_univ, tab completion will tell you that
apply eq_univ_of_forall is a good way to start the proof. We also recommend using the theorem ex-
ists_infinite_primes.

example : (⋃ p ∈ primes, {x | x ≤ p}) = univ :=
sorry

Give a collection of sets, s : set (set α), their union, ⋃0 s, has type set α and is defined as {x | ∃ t ∈
s, x ∈ t}. Similarly, their intersection, ⋂0 s, is defined as {x | ∀ t ∈ s, x ∈ t}. These operations are called
sUnion and sInter, respectively. The following examples show their relationship to bounded union and intersection.
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variables {α : Type*} (s : set (set α))

example : ⋃0 s = ⋃ t ∈ s, t :=
begin

ext x,
rw mem_bUnion_iff,
refl

end

example : ⋂0 s = ⋂ t ∈ s, t :=
begin

ext x,
rw mem_bInter_iff,
refl

end

In the library, these identities are called sUnion_eq_bUnion and sInter_eq_bInter.

4.2 Functions

If f : α → β is a function and p is a set of elements of type β, the library defines preimage f p, written f ¹'
p, to be {x | f x ∈ p}. The expression x ∈ f ¹' p reduces to f x ∈ s. This is often convenient, as in the
following example:

import data.set.function

variables {α β : Type*}
variable f : α → β
variables u v : set β

example : f ¹' (u ∩ v) = f ¹' u ∩ f ¹' v :=
by { ext, refl }

If s is a set of elements of type α, the library also defines image f s, written f '' s, to be {y | ∃ x, x ∈ s
∧ f x = y}. So a hypothesis y ∈ f '' s decomposes to a triple 〈x, xs, xeq〉 with x : α satisfying the
hypotheses xs : x ∈ s and xeq : f x = y. The rfl tag in the rintros tactic (see Section 3.2) was made
precisely for this sort of situation.

example : f '' (s ∪ t) = f '' s ∪ f '' t :=
begin

ext y, split,
{ rintros ⟨x, xs | xt, rfl⟩,
{ left, use [x, xs] },
right, use [x, xt] },

rintros (⟨x, xs, rfl⟩ | ⟨x, xt, rfl⟩),
{ use [x, or.inl xs] },
use [x, or.inr xt]

end

Notice also that the use tactic applies refl to close goals when it can.
Here is another example:

example : s ⊆ f ¹' (f '' s) :=
begin

(continues on next page)
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intros x xs,
show f x ∈ f '' s,
use [x, xs]

end

We can replace the line use [x, xs] by apply mem_image_of_mem f xs if we want to use a theorem
specifically designed for that purpose. But knowing that the image is defined in terms of an existential quantifier is often
convenient.
The following equivalence is a good exercise:

example : f '' s ⊆ t ↔ s ⊆ f ¹' t :=
sorry

It shows that image f and preimage f are an instance of what is known as a Galois connection between set α and
set β, each partially ordered by the subset relation. In the library, this equivalence is named image_subset_iff.
In practice, the right-hand side is often the more useful representation, because y ∈ f ¹' t unfolds to f y ∈ t
whereas working with x ∈ f '' s requires decomposing an existential quantifier.
Here is a long list of set-theoretic identities for you to enjoy. You don’t have to do all of them at once; do a few of them,
and set the rest aside for a rainy day.

variables {α β : Type*}
variable f : α → β
variables s t : set α
variables u v : set β

example (h : injective f) : f ¹' (f '' s) ⊆ s :=
sorry

example : f '' (f ¹' u) ⊆ u :=
sorry

example (h : surjective f) : u ⊆ f '' (f ¹' u) :=
sorry

example (h : s ⊆ t) : f '' s ⊆ f '' t :=
sorry

example (h : u ⊆ v) : f ¹' u ⊆ f ¹' v :=
sorry

example : f ¹' (u ∪ v) = f ¹' u ∪ f ¹' v :=
sorry

example : f '' (s ∩ t) ⊆ f '' s ∩ f '' t :=
sorry

example (h : injective f) : f '' s ∩ f '' t ⊆ f '' (s ∩ t) :=
sorry

example : f '' s \ f '' t ⊆ f '' (s \ t) :=
sorry

example : f ¹' u \ f ¹' v ⊆ f ¹' (u \ v) :=
sorry

(continues on next page)
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example : f '' s ∩ v = f '' (s ∩ f ¹' v) :=
sorry

example : f '' (s ∩ f ¹' u) ⊆ f '' s ∪ u :=
sorry

example : s ∩ f ¹' u ⊆ f ¹' (f '' s ∩ u) :=
sorry

example : s ∪ f ¹' u ⊆ f ¹' (f '' s ∪ u) :=
sorry

You can also try your hand at the next group of exercises, which characterize the behavior of images and preimages with
respect to indexed unions and intersections. In the third exercise, the argument i : I is needed to guarantee that the
index set is nonempty. To prove any of these, we recommend using ext or intro to unfold the meaning of an equation
or inclusion between sets, and then calling simp to unpack the conditions for membership.

variables {α β I : Type*}
variable f : α → β
variable A : I → set α
variable B : I → set β

example : f '' (⋃ i, A i) = ⋃ i, f '' A i :=
sorry

example : f '' (⋂ i, A i) ⊆ ⋂ i, f '' A i :=
sorry

example (i : I) (injf : injective f) :
(⋂ i, f '' A i) ⊆ f '' (⋂ i, A i) :=

sorry

example : f ¹' (⋃ i, B i) = ⋃ i, f ¹' (B i) :=
sorry

example : f ¹' (⋂ i, B i) = ⋂ i, f ¹' (B i) :=
sorry

In type theory, a function f : α → β can be applied to any element of the domain α, but we sometimes want to
represent functions that are meaningfully defined on only some of those elements. For example, as a function of type
R → R → R, division is only meaningful when the second argument is nonzero. In mathematics, when we write an
expression of the form s / t, we should have implicitly or explicitly ruled out the case that t is zero.
But since division has type R → R → R in Lean, it also has to return a value when the second argument is zero. The
strategy generally followed by the library is to assign such functions convenient values outside their natural domain. For
example, defining x / 0 to be 0 means that the identity (x + y) / z = x / z + y / z holds for every x, y,
and z.
As a result, when we read an expression s / t in Lean, we should not assume that t is a meaningful input value. When
we need to, we can restrict the statement of a theorem to guarantee that it is. For example, theorem div_mul_cancel
asserts x 6= 0 → x / y * y = x for x and y in suitable algebraic structures.
The library defines a predicate inj_on f s to say that f is injective on s. It is defined as follows:

example : inj_on f s ↔
∀ x1 ∈ s, ∀ x2 ∈ s, f x1 = f x2 → x1 = x2 :=

iff.refl _
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The statement injective f is provably equivalent to inj_on f univ. Similarly, the library defines range f
to be {x | ∃y, f y = x}, so range f is provably equal to f '' univ. This is a common theme in mathlib:
although many properties of functions are defined relative to their full domain, there are often relativized versions that
restrict the statements to a subset of the domain type.
Here is are some examples of inj_on and range in use:

example : inj_on log { x | x > 0 } :=
begin

intros x xpos y ypos,
intro e, -- log x = log y
calc
x = exp (log x) : by rw exp_log xpos
... = exp (log y) : by rw e
... = y : by rw exp_log ypos

end

example : range exp = { y | y > 0 } :=
begin

ext y, split,
{ rintros ⟨x, rfl⟩,
apply exp_pos },

intro ypos,
use log y,
rw exp_log ypos

end

Try proving these:

import data.real.sqrt

open set real

example : inj_on sqrt { x | x ≥ 0 } :=
sorry

example : inj_on (λ x, x^2) { x : R | x ≥ 0 } :=
sorry

example : sqrt '' { x | x ≥ 0 } = {y | y ≥ 0} :=
sorry

example : range (λ x, x^2) = {y : R | y ≥ 0} :=
sorry

To define the inverse of a function f : α → β, we will use two new ingredients. First, we need to deal with the fact
that an arbitrary type in Lean may be empty. To define the inverse to f at y when there is no x satisfying f x = y, we
want to assign a default value in α. Adding the annotation [inhabited α] as a variable is tantamount to assuming
that α has a preferred element, which is denoted default α. Second, in the case where there is more than one x such
that f x = y, the inverse function needs to choose one of them. This requires an appeal to the axiom of choice. Lean
allows various ways of accessing it; one convenient method is to use the classical some operator, illustrated below.

variables {α : Type*} [inhabited α]

#check default α

variables (P : α → Prop) (h : ∃ x, P x)

(continues on next page)
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#check classical.some h

example : P (classical.some h) := classical.some_spec h

Given h : ∃ x, P x, the value of classical.some h is some x satisfying P x. The theorem classical.
some_spec h says that classical.some h meets this specification.
With these in hand, we can define the inverse function as follows:

import data.set.function tactic

variables {α β : Type*} [inhabited α]

noncomputable theory
open_locale classical

def inverse (f : α → β) : β → α :=
λ y : β, if h : ∃ x, f x = y then classical.some h else default α

theorem inverse_spec {f : α → β} (y : β) (h : ∃ x, f x = y) :
f (inverse f y) = y :=

begin
rw inverse, dsimp, rw dif_pos h,
exact classical.some_spec h

end

The lines noncomputable theory and open_locale classical are needed because we are using classical
logic in an essential way. On input y, the function inverse f returns some value of x satisfying f x = y if there is
one, and a default element of α otherwise. This is an instance of a dependent if construction, since in the positive case,
the value returned, classical.some h, depends on the assumption h. The identity dif_pos h rewrites if h :
e then a else b to a given h : e, and, similarly, dif_neg h rewrites it to b given h : ¬ e. The theorem
inverse_spec says that inverse f meets the first part of this specification.
Don’t worry if you do not fully understand how these work. The theorem inverse_spec alone should be enough to
show that inverse f is a left inverse if and only if f is injective and a right inverse if and only if f is surjective.
Look up the definition of left_inverse and right_inverse by double-clicking or right-clicking on them in VS
Code, or using the commands #print left_inverse and #print right_inverse. Then try to prove the two
theorems. They are tricky! It helps to do the proofs on paper before you start hacking through the details. You should be
able to prove each of them with about a half-dozen short lines. If you are looking for an extra challenge, try to condense
each proof to a single-line proof term.

variable f : α → β

example : injective f ↔ left_inverse (inverse f) f :=
sorry

example : surjective f ↔ right_inverse (inverse f) f :=
sorry

We close this section with a type-theoretic statement of Cantor’s famous theorem that there is no surjective function from
a set to its power set. See if you can understand the proof, and then fill in the two lines that are missing.

theorem Cantor : ∀ f : α → set α, ¬ surjective f :=
begin

intros f surjf,
let S := { i | i /∈ f i},

(continues on next page)
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rcases surjf S with ⟨j, h⟩,
have h1 : j /∈ f j,
{ intro h',
have : j /∈ f j,

{ by rwa h at h' },
contradiction },

have h2 : j ∈ S,
sorry,

have h3 : j /∈ S,
sorry,

contradiction
end
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