
Chaining extensionality lemmas
in Lean’s Mathlib

Eric Wieser1[0000−0003−0412−4978]

Cambridge University Engineering Department, UK, efw27@cam.ac.uk

Abstract. In its most basic form, Lean’s ext or “extensionality” tactic
reduces equalities of functions f = g into equality at every evaluation ∀ x,

f x = g x, and equalities of sets s = t into equivalence of membership in
each set ∀ x, x ∈ s ↔ x ∈ t. The tactic is extensible; new scenarios can be
enabled by adding an @[ext] attribute to a theorem, for instance to add
support for finite sets analogous to the support for sets.
Where the ext tactic can provide particular value is when working with
equalities of morphisms; for instance, to show that two linear maps from
the tensor product of two modules agrees, it suffices to show that the
two maps agree on the pure tensors. Using tensor products as the main
example, this paper explores a well-established pattern in mathlib (cham-
pioned largely by the author) that declares these extensions in a way
that allows “chaining”; by preferring to state the assumption in terms of
an equality of “partially-applied” morphisms, quantifying over elements
only as a last result.
Inevitably, the design of these tools shapes the way in which they are
used; this paper concludes by noting how the ext tactic encourages ex-
pressing statements in a point-free manner, which at times impedes clar-
ity.

Keywords: Extensionality ·Tactics ·Formalization·mathlib

1 Introduction

Extensionality is an important and sometimes foundational concept in theorem
proving; in Lean [0], it manifests as the axiom propext (which says that two
propositions are equal if each implies the other), and the theorem funext (which
says that two functions are equal if their evaluations agree everywhere).

The mathematics library for Lean, mathlib [0], augments1 these fundamental
results with a tactic, ext [mathlib#104], which allows extensibility via tagging
theorems with an @[ext] attribute, such as Set.ext which2 turns equalities of
sets (s = t) into equivalence of membership in each set (∀ x, x ∈ s ↔ x ∈ t). We
will call such theorems “extensionality lemmas”. The tactic itself is simple: it
1 Or at least, used to; as of [lean4#3306], the tactic is now part of Lean itself.
2 By combining the more-foundational funext and propext.



2 Eric Wieser

just finds theorems with this attribute whose conclusion matches the current
equality, and applies3 them repeatedly, introducing any new variables from ∀

quantifiers along the way. In this paper, we shall focus instead on how to choose
these extensionality lemmas.

An obvious set of candidates for registration with this mechanism are mor-
phisms (such as linear maps) and sub-objects (such as subspaces), for which the
extensionality lemmas are respectively trivial extensions of function extension-
ality and set extensionality. The former can be stated as theorem 1:

Theorem 1. For a commutative ring R and a pair of R-modules M , N , to show
two R-linear maps f, g : M →R N are equal, it suffices to show that they agree
everywhere; ∀m, f(m) = g(m).

In some cases, we can write a more specialized extensionality lemma. One
particularly useful example is

Theorem 2. For a commutative ring R and an R-module M , to show two R-
linear maps f, g : R →R M are equal, it suffices to show that they agree on 1;
f(1) = g(1).

For a more interesting example, let us consider linear maps from the tensor
product of two modules, for which the natural statement of extensionality is

Theorem 3. For a commutative ring R and a trio of R-modules M , N , P , to
show two R-linear maps f, g : (M ⊗R N) →R P are equal, it suffices to show
that they agree on the pure tensors; ∀m,∀n, f(m⊗ n) = g(m⊗ n).

Due to its weaker assumption, this is a stronger statement than the extensionality
lemma for linear maps in theorem 1. We can write theorem 3 in Lean as follows:

theorem TensorProduct.ext {R M N P : Type*}

[CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P]

[Module R M] [Module R N] [Module R P]

{f g : (M ⊗[R] N) →ₗ[R] P}

(H : ∀ (m : M) (n : N), f (m ⊗ₜ n) = g (m ⊗ₜ n)) : f = g :=

sorry

This a much more useful lemma than the one that requires H : ∀ (mn : M ⊗[R] N),

f mn = g mn, as it saves us from having to split mn into pure tensors ourselves. To
see this benefit, we can work through a proof that (TensorProduct.comm R M N).symm

= TensorProduct.comm R N M; that is, the natural braiding of the tensor product that
on the pure tensors sends m ⊗ n 7→ n ⊗ m is symmetric. Listing 1 compares
the formalization of such a proof with and without theorem 3. Without the
assistance of theorem 3, we are forced to induct on the structure of the tensor
product, and end up with two additional subgoals that we’d prefer not to think
about.
3 In the sense of backwards reasoning.



Chaining extensionality lemmas in Lean’s Mathlib 3

variable {R M N : Type*}

variable [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]

theorem TensorProduct.comm_symm :

(comm R M N).symm = comm R N M := by

ext nm

show (comm R M N).symm nm = comm R N M nm

induction nm using TensorProduct.induction_on with

| zero => -- the `nm = 0` case

simp only [map_zero]

| tmul n m => -- the `nm = n ⊗ₜ m` case

rfl

| add x y hx hy => -- the `nm = x + y` case with

-- `hx : (comm R M N).symm x = comm R N M x`

-- `hy : (comm R M N).symm y = comm R N M y`

simp only [hx, hy, map_add]

(a) Using only LinearMap.ext, theorem 1

theorem TensorProduct.comm_symm :

(comm R M N).symm = comm R N M := by

apply LinearEquiv.toLinearMap_injective

ext n m

show

(comm R M N).symm (n ⊗ₜ m) = comm R N M (n ⊗ₜ m)

rfl -- true by definition!

(b) Using TensorProduct.ext, theorem 3

Listing 1: Proofs that the natural braiding of the tensor product is symmetric
Using theorem 3 in (b) results in a much simpler argument than (a). Writing a copy
of theorem 3 for linear equivalences, the apply tactic in b can also be dropped.

2 Chaining extensionality lemmas

However, even theorem 3 still only scratches the surface of the power behind
the ext tactic. Where it excels is in its ability to chain extensionality lemmas.
A simple example of this is reducing equalities of two-argument functions into
showing they agree when fully-applied (∀ x y, f x y = g x y), but there are far
more interesting cases. In particular, we shall explore how the ext tactic can be
chained on equalities of morphisms, specifically linear maps and algebra mor-
phisms. The key insight that massively boosts the power of ext is the fact that
turning an equality of morphisms into an equality of its evaluations should be
a last resort! This may seem surprising, since in the simple examples it seemed
like the raison d’être of ext was to introduce these ∀ x quantifiers; but there are
frequently better approaches.

To better understand this insight, we start with a warning of what happens
if we overlook it, by examining the following extension of theorem 3:

Theorem 4. For a commutative ring R and a quadruplet of R-modules M , N ,
P , Q, to show two R-linear maps f3, g3 : ((M ⊗R N)⊗R P ) →R Q are equal, it
suffices to show that they agree on the pure tensors; ∀m,∀n,∀p, f((m⊗n)⊗p) =
g((m⊗ n)⊗ p).

The statement of this extensionality lemma raises an immediate red flag; it
suggests that we are doomed to state a new theorem for every possible arity and
associativity of tensor products4 (and of course to prove each of them!). We can
4 Indeed, proving that vector spaces form a monoidal category requires two different

associativities of the 4-ary version.



4 Eric Wieser

try to lessen this blow by proving theorem 4 in terms of theorem 3, but it only gets
us halfway; we are left to prove that ∀xmn : M⊗N, ∀p, f(xmn⊗p) = g(xmn⊗p),
where we have successfully taken apart only one of the two tensor products, and
are once again forced to induct upon the structure of xmn.

Our trouble here is that theorem 3 is too weak; it cannot be chained with
itself, because it consumes an equality of elements not an equality of morphisms.
To correct this, we state it as in theorem 5:

Theorem 5. For a commutative ring R and a trio of R-modules (M , N , P ), to
show two R-linear maps f, g : (M⊗RN) →R P are equal, it suffices to show that
they agree when composed with the canonical bilinear map (⊗) : M →R N →R

(M⊗RN); f ◦2(⊗) = g◦2(⊗). This equality is an equality of bilinear maps (linear
maps with a codomain that is itself a linear map) of type M →R N →R P .

The proof of theorem 5 follows immediately from that of theorem 3; indeed,
applying ext turns the former into the latter! In Lean, this condition is written
(TensorProduct.mk R M N).compr₂ f = (TensorProduct.mk R M N).compr₂ g, where b.compr₂

f (or f ◦2 b) is the bilinear map such that b.compr₂ f m n = f (b m n).
We now arrive at our key conclusion; theorem 4 can be proven using iterated

applications of theorem 5. The approach is shown in fig. 1, where T is theorem 5
and L is theorem 1. It is here where our earlier remark that “turning an equality
of morphisms into an equality of its evaluations should be a last resort” comes
into play; the most structured (and thus easiest to prove) statement is reached
by preferring T edges over L edges, as taking an L edge prematurely leads to
a dead end. The ext tactic can handle this graph traversal automatically; by
setting the T edges to have higher priority, they will be attempted first. It can
be seen that in fact, variants of theorem 4 for any arity of associativity of linear
maps from tensor products can be tackled in the same way; T edges will always
split the left-most tensor product, and L edges will consume non-tensor products
from the left.

3 Wider applications

The benefits of this strategy (which we call “partially-applied ext lemmas”) ex-
tends far beyond tensor products; there are numerous other situations where we
can apply them:

– To show two linear maps (M⊕N) →R P from binary direct sums of modules
agree, it suffices to show that they agree when composed with inl : M →R

M ⊕N := m 7→ (m, 0) and inr : N →R M ⊕N := n 7→ (0, n); f ◦ inl = g ◦ inl
and f ◦ inr = g ◦ inr.

– To show two linear maps f, g : (
⊕

i Mi) →R N from n-ary direct sums of
modules agree, it suffices to show that they agree when composed with every
canonical injection into the ith component ιi : Mi →

⊕
i Mi; ∀i, f ◦ιi = g◦ιi.

– To show two linear maps from polynomials f, g : R[X] →R M agree, it
suffices to show they agree when composed with each of the maps that scale
the kth power of X; ∀n, f ◦ (r 7→ rXk) = g ◦ (r 7→ rXk).



Chaining extensionality lemmas in Lean’s Mathlib 5

f3, g3 : ((M ⊗R N)⊗R P ) →R Q
` f3 = g3

xmnp : (M ⊗R N)⊗R P
` f(xmnp) = g(xmnp)

f3 ◦2 (⊗) = g3 ◦2 (⊗)

xmn : M ⊗R N
` f3 ◦ (xmn ⊗ ·) = g3 ◦ (xmn ⊗ ·)

xmn : M ⊗R N, p : P
` f3(xmn ⊗ p) = g(xmn ⊗ p)

f3 ◦2 (⊗) ◦2 (⊗) = g3 ◦2 (⊗) ◦2 (⊗)

m : M
` f3 ◦2 (⊗) ◦ (m⊗ ·) = g3 ◦2 (⊗) ◦ (m⊗ ·)

m : M,n : N
` f3 ◦ ((m⊗ n)⊗ ·) = g3 ◦ ((m⊗ n)⊗ ·)

m : M,n : N, p : P
` f3((m⊗ n)⊗ p) = g3((m⊗ n)⊗ p)

L T

L

L

T

L

L

L

Theorem 3

Theorem 4

Fig. 1: Factorizing theorems 3 and 4 into theorem 5 (T) and theorem 1 (L)
Arrows show implications. Branching indicates that either child is sufficient, not that
both are necessary. Indeed, extensionality between tensor products of any arity of
associativity factors through T and L.

Arguably the cases that these examples apply to are all just different special
cases of free modules, but to mathlib they are genuinely different objects, and so
we must teach ext about each of them separately. Similar families of extension-
ality lemmas exist for special cases (or quotients) of free monoids (and monoid
morphisms), free rings (and ring morphisms), and free algebras (and algebra
morphisms). Crucially, within these families, the “partially-applied” lemmas are
mutually compatible; as each makes the minimal amount of progress and avoids
applying L (theorem 1). For instance, if faced with a pair of maps

f, g : ((R[X]⊗M)⊕ (
⊕
i

Ni)) →R P,

then ext will leave us to prove both of

∀k, ∀m, f((Xk ⊗m, 0)) = g((Xk ⊗m, 0))

∀i,∀n, f((0, ιi(n))) = g((0, ιi(n))),

as shown in fig. 2.



6 Eric Wieser

f, g : ((R[X]⊗M)⊕ (
⊕

i Mi)) →R P
` f = g

f ◦ inl = g ◦ inl

f ◦ inl ◦2 (⊗) = g ◦ inl ◦2 (⊗)

k : N
` f ◦ inl ◦2 (⊗) ◦ (r 7→ rXk) = g ◦ inl ◦2 (⊗) ◦ (r 7→ rXk)

k : N
` f ◦ inl ◦ (Xk ⊗ ·) = g ◦ inl ◦ (Xk ⊗ ·)

k : N
` f((Xk ⊗m, 0)) = g((Xk ⊗m, 0))

f ◦ inr = g ◦ inr

i : I
` f ◦ inr ◦ ιi = g ◦ inr ◦ ιi

i : I, n : Ni

` f((0, ιi(n)) = g((0, ιi(n))

⊕

T

R[X]

L′

L

⊕
i

L

Fig. 2: Extensionality for a linear map from an arbitrarily-chosen compound type.
Here, the edges labelled R[X], ⊕, and

⊕
i are the extensionality lemmas listed in

section 3 (for polynomials, binary-direct sums, and n-ary direct sums, respectively), L′

is theorem 2, and L and T are the same as in fig. 1.

4 Point-free statements

So far, we have seen how extensionality lemmas can be designed to greatly aid
the task of proving equalities between morphisms from complex types. Unfor-
tunately, most equalities we face are between the objects, and we rarely face
the equalities of morphisms presented so far unless we deliberately frame our
problems in a certain way. This section will show how to perform this framing.

A simple example of adjusting our statements to make such an equality
appear arises when building an isomorphism of modules M ∼=R N from the
forward and inverse maps f : M →R N and f−1 : N →R M . The conventional
way to construct the isomorphism would be to show that these morphisms are
left and right inverses through ∀m, g(f(m)) = m and ∀n, f(g(n)) = n; which
are equalities of objects, not morphisms. If we instead re-frame our statements
to g ◦ f = id and f ◦ g = id, we are faced with equalities of morphisms that
we can apply ext to. mathlib already contains many definitions that assemble
isomorphisms in this way. Once again turning to tensor products as an illustrative
example, if we have M := M1⊗RM2 and N := N1⊗RN2, then this approach of
showing that the composition is the identity, combined with the ext tactic, allows
us to prove f and g are inverses by considering only ∀m1,∀m2, g(f(m1⊗m2)) =
m1 ⊗m2 and ∀n1,∀n2, f(g(n1 ⊗ n2)) = n1 ⊗ n2.

More generally, when faced with an equality of objects in terms of two func-
tions of a free variable, we can reduce our problem to an equality of morphisms



Chaining extensionality lemmas in Lean’s Mathlib 7

by pushing that variable all the way to an application on the right. For instance,
if we want to show that ∀x, x × y = y × x (where × is an arbitrary bilinear
operation), we can:

– rewrite as ∀x, (· × y)(x) = (y× ·)(x), where the free variable x is now on the
right on both sides;

– note that (· × y) and (y × ·) describe linear maps
– conclude that it would be sufficient to prove (· × y) = (y × ·), which is an

equality of morphisms

This allows us to apply any extensionality lemmas that replace x with the more
restricted structured values (such as pure tensors). We can then repeat to put
y on the right, and apply more relevant extensionality lemmas. A particularly
common situation where this trick is useful is for putting multiplicative struc-
tures upon new algebras, such as upon tensor products, tensor powers, and direct
sums.

As it turns out, there is a much more concise way of presenting this reasoning
for this example; we can show outright5 that × is a bilinear map, and write our
goal with all the free variables on the right as (×)(x, y) = flip(×)(x, y), where
flip turns one bilinear map into another. We conclude that it is sufficient to prove
that (×) = flip(×), an equality of bilinear maps on which we can then apply all
our extensionality lemmas in one go.

In general, this style of writing functions with no free variables is called
“point-free”, and is a fairly common trick in function programming languages6

and in category theory7. To give a more complex example, the function x, y 7→
f(x) × g(y) can be written in a point-free style as either flip(flip(×) ◦ g) ◦ f
or as flip(◦)(g) ◦ (×) ◦ f . What sets our situation apart from the typical point-
free approach is that we are not simply constructing functions, but morphisms
that preserve algebraic operators. As a result, we need an extensive library of
composition operators that are themselves morphisms; which for linear maps,
relies heavily upon the infrastructure described in [0, §3.1].

5 Conclusion

This paper summarized the state of the ext tactic in mathlib, and explained how
“partially-applied ext-lemmas” can provide significant value; especially when
combined with careful construction of point-free statements. The approach was
presented here exclusively through Lean, but would be straightforward to im-
plement in other similar systems like Coq.

While empowering the ext tactic and natural in category theory, point-free
statements are often awkward to construct mid-proof. Thankfully, there is work
in the Lean ecosystem to alleviate this: [0] introduces a fun x =>L[R] f x notation
5 As was pointed out by Greg Price, who tidied the author’s proofs in [mathlib#7029].
6 Such as Haskell, whose wiki has a Pointfree page.
7 Where in general, we do not have a notion of “applying” morphisms

https://wiki.haskell.org/Pointfree


8 Eric Wieser

for continuous linear maps (and a selection of other morphism types), providing
users with the same flexibility they are used to with the builtin fun x => f x

notation, but invoking automation to prove the result satisfies the properties of
the required morphism type (using [0]’s fun_prop tactic). In this style, our final
example in section 4 of x, y 7→ f(x) × g(y) could be written as a linear map as
fun x =>ₗ[R] fun y =>ₗ[R] f x * g y.

The author cannot claim credit for the ext tactic, nor for the idea of us-
ing “partially-applied ext lemmas”, but is responsible for extending this pattern
through many relevant types in mathlib. The first sign of such a lemma in mathlib
that the author is aware of was added by Chris Hughes in [mathlib#3408] for
the semidirect product, though it was not tagged with @[ext]. Chris Hughes was
also responsible for suggesting a similar lemma for the tensor algebra in review
of [mathlib#3531], though once again it was never tagged @[ext]. Scott Morrison
appears to have realized the value of the @[ext] attribute when generalizing the
construction of the tensor algebra to a quotient of the free algebra in [math-
lib#4078]. The first explicit mention of chaining that the author can find was by
Yury Kudryashov, who noted in [mathlib#4741] that it was useful for working
with free modules and algebras.

The author is responsible for documenting the pattern in [mathlib#5484],
and for contributing numerous extensionality lemmas, some further examples of
which are shown in appendix A.

Acknowledgments The author is funded by a scholarship from the Cambridge
Trust.

https://github.com/leanprover-community/mathlib/pull/3531#discussion_r460153518
https://github.com/leanprover-community/mathlib/pull/3531#discussion_r460153518


Chaining extensionality lemmas in Lean’s Mathlib 9

A Extensionality lemmas contributed by the author

This appendix provides the statements of a selection of @[ext] lemmas contributed
by the author to mathlib, which either follow the pattern described in section 2
to allow chaining, or eliminate quantifiers at the end of such chains as theorem 2
does. For brevity, the @[ext] attribute, along with the precise information about
types A, B, e.t.c„ has been omitted from every example. The theorem names can
(at the time of writing) be looked up in the online mathlib documentation to see
the fully-quantified statements.

While the code is presented here in Lean 4 (as this is how it now survives in
mathlib 4), the majority of these were contributed in Lean 3, and so the GitHub
references lead to discussions about Lean 3 code.

A.1 Algebra morphisms

– from the exterior algebra in [mathlib#4297]
theorem ExteriorAlgebra.hom_ext ⦃f g : ExteriorAlgebra R M →ₐ[R] A⦄ :

f.toLinearMap.comp (ι R) = g.toLinearMap.comp (ι R) → f = g

– from the Clifford algebra in [mathlib#4430]
theorem CliffordAlgebra.hom_ext ⦃f g : CliffordAlgebra Q →ₐ[R] A⦄ :

f.toLinearMap.comp (ι Q) = g.toLinearMap.comp (ι Q) → f = g

– from graded algebras in [mathlib#8783]
theorem DirectSum.algHom_ext' ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ :

(∀ i, f.toLinearMap.comp (lof _ _ A i) = g.toLinearMap.comp (lof _ _ A i)) →

f = g

– from the complex numbers in [mathlib#8105]
theorem Complex.algHom_ext ⦃f g : ℂ →ₐ[ℝ] A⦄ : f I = g I → f = g

– from the dual numbers in [mathlib#10730]
theorem DualNumber.algHom_ext ⦃f g : R[ε] →ₐ[R] A⦄ : f ε = g ε → f = g

– from the trivial square-zero extension in [mathlib#10754]
theorem TrivSqZeroExt.algHom_ext' ⦃f g : tsze R M →ₐ[S] A⦄

(hinl : f.comp (inlAlgHom S R M) = g.comp (inlAlgHom S R M))

(hinr : f.toLinearMap.comp (inrHom R M |>.restrictScalars S) =

g.toLinearMap.comp (inrHom R M |>.restrictScalars S)) :

f = g

– from the tensor product of algebras in [mathlib4#6417]
theorem Algebra.TensorProduct.ext ⦃f g : (A ⊗[R] B) →ₐ[S] C⦄

(hinl : f.comp includeLeft = g.comp includeLeft)

(hinr : (f.restrictScalars R).comp includeRight =

(g.restrictScalars R).comp includeRight) :

f = g



10 Eric Wieser

– from polynomials over an algebra in [mathlib4#8116]
theorem Polynomial.algHom_ext' ⦃f g : A[X] →ₐ[R] B⦄

(hC : f.comp CAlgHom = g.comp CAlgHom)

(hX : f X = g X) :

f = g

A.2 Linear maps

– from n-ary direct sums in [mathlib#4821]
theorem DirectSum.decompose_lhom_ext ⦃f g : M →ₗ[R] N⦄ :

(∀ i, f ∘ₗ (� i).subtype = g ∘ₗ (� i).subtype) → f = g

– from tensor products in [mathlib#6105] (theorem 5)
theorem TensorProduct.ext ⦃f g : M ⊗ N →ₗ[R] P⦄ :

((mk R M N).compr₂ f = (mk R M N).compr₂ g) → f = g

– from binary direct sums in [mathlib#6124]
theorem LinearMap.prod_ext ⦃f g : M × M₂ →ₗ[R] M₃⦄

(hl : f.comp (inl _ _ _) = g.comp (inl _ _ _))

(hr : f.comp (inr _ _ _) = g.comp (inr _ _ _)) :

f = g

– from the exterior algebra in [mathlib#14803]
theorem ExteriorAlgebra.lhom_ext ⦃f g : ExteriorAlgebra R M →ₗ[R] N⦄ :

(∀ i, f.compAlternatingMap (ιMulti R i) = g.compAlternatingMap (ιMulti R i))

→ f = g

A.3 Other morphisms

– ring morphisms from Z
[√

d
]

in [mathlib#5640]

theorem Zqrtd.hom_ext ⦃f g : ℤ√d →+* R⦄ : f sqrtd = g sqrtd → f = g

– morphisms from quotient constructions in [mathlib#8641]: quotients by sub-
groups, submodules, lie submodules, and ideals
theorem QuotientGroup.monoidHom_ext ⦃f g : G

/
N →* M⦄ :

f.comp (mk' N) = g.comp (mk' N) → f = g

theorem Submodule.linearMap_qext ⦃f g : M
/

p →ₛₗ[τ₁₂] M₂⦄ :

f.comp p.mkQ = g.comp p.mkQ → f = g

theorem LieSubmodule.Quotient.lieModuleHom_ext ⦃f g : M
/

N →ₗ⁅R,L⁆ M⦄ :

f.comp (mk' N) = g.comp (mk' N) → f = g :=

theorem Ideal.Quotient.ringHom_ext ⦃f g : R
/

I →+* S⦄ :

f.comp (mk I) = g.comp (mk I) → f = g



Chaining extensionality lemmas in Lean’s Mathlib 11

References

[0] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover
and Programming Language”. In: Automated Deduction – CADE 28. CADE
2021. Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2021, pp. 625–
635. isbn: 978-3-030-79876-5. doi: 10.1007/978-3-030-79876-5_37 (cit. on
p. 1).

[0] The mathlib Community. “The Lean Mathematical Library”. In: Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs. POPL ’20: 47th Annual ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages. New Orleans LA USA: ACM, Jan. 20,
2020, pp. 367–381. isbn: 978-1-4503-7097-4. doi: 10.1145/3372885.3373824
(cit. on p. 1).

[0] Eric Wieser. “Scalar Actions in Lean’s Mathlib”. In: Workshop Papers of
the 14th Conference on Intelligent Computer Mathematics. CICM 2021.
Vol. 3377. Timisoara, Romania: CEUR-WS, Aug. 10, 2021. arXiv: 2108.

10700 [cs.LO] (cit. on p. 7).
[0] Tomáš Skřivan. Lecopivo/SciLean: Scientific Computing in Lean 4. url:

https://github.com/lecopivo/SciLean (visited on 02/18/2024) (cit. on
pp. 7, 8).

Github references

[lean4#3306] Scott Morrison. chore: upstream ext tactic. Feb. 12, 2024
(cit. on p. 1).

[mathlib#104] Simon Hudon. feat(tactic/ext): new ext tactic and corre-
sponding extensionality… Reviewed by Johannes Hölzl and
Mario Carneiro. Apr. 2018 (cit. on p. 1).

[mathlib#7029] Greg Price. chore(algebra/direct_sum_graded): golf proofs.
Reviewed by Eric Wieser and Scott Morrison. Apr. 2021
(cit. on p. 7).

[mathlib#3408] Chris Hughes. feat(group_theory/semidirect_product): mk_eq_inl_mul_inr
and hom_ext. Reviewed by Scott Morrison. July 2020 (cit. on
p. 8).

[mathlib#3531] Adam Topaz. feat(linear_algebra/tensor_algebra): Tensor
algebras. Reviewed by Eric Wieser, Scott Morrison, Patrick
Massot, Johan Commelin, and Chris Hughes. July 2020 (cit.
on p. 8).

[mathlib#4078] Scott Morrison. feat(algebra/ring_quot): quotients of non-
commutative rings. Reviewed by Eric Wieser, Kenny Lau,
and Johan Commelin. Sept. 2020 (cit. on p. 8).

[mathlib#4741] Yury G. Kudryashov. chore(*): a few more type-specific ext
lemmas. Reviewed by Johan Commelin and Eric Wieser.
Oct. 2020 (cit. on p. 8).

https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2108.10700
https://arxiv.org/abs/2108.10700
https://github.com/lecopivo/SciLean
https://github.com/leanprover/lean4/pull/3306
https://github.com/leanprover-community/mathlib/pull/104
https://github.com/leanprover-community/mathlib/pull/7029
https://github.com/leanprover-community/mathlib/pull/3408
https://github.com/leanprover-community/mathlib/pull/3531
https://github.com/leanprover-community/mathlib/pull/4078
https://github.com/leanprover-community/mathlib/pull/4741


12 Eric Wieser

[mathlib#5484] Eric Wieser. feat(group_theory/*): mark some lemmas as
ext (about homs out of free constructions). Reviewed by
Floris van Doorn. Dec. 2020 (cit. on p. 8).

[mathlib#4297] Eric Wieser. feat(linear_algebra/exterior_algebra): Add an
exterior algebra. Reviewed by Anne Baanen and Scott Mor-
rison. Sept. 2020 (cit. on p. 9).

[mathlib#4430] Eric Wieser. feat(linear_algebra/clifford_algebra): Add a def-
inition derived from exterior_algebra.lean. Reviewed by Anne
Baanen, Adam Topaz, Heather Macbeth, and Utensil Song.
Oct. 2020 (cit. on p. 9).

[mathlib#8783] Eric Wieser. feat(algebra/direct_sum): graded algebras. Re-
viewed by Kevin Buzzard and Johan Commelin. Aug. 2021
(cit. on p. 9).

[mathlib#8105] Eric Wieser. feat(data/complex/module): add complex.alg_hom_ext.
Reviewed by Anne Baanen. June 2021 (cit. on p. 9).

[mathlib#10730] Eric Wieser. feat(linear_algebra/clifford_algebra/equivs): There
is a clifford algebra isomorphic to the dual numbers. Re-
viewed by Johan Commelin and Rob Lewis. Dec. 2021 (cit.
on p. 9).

[mathlib#10754] Eric Wieser. feat(algebra/triv_sq_zero_ext): universal prop-
erty. Reviewed by Johan Commelin. Dec. 2021 (cit. on p. 9).

[mathlib4#6417] Eric Wieser. feat(RingTheory/TensorProduct): heterogenize.
Reviewed by Johan Commelin and Antoine Chambert-Loir.
Aug. 2023 (cit. on p. 9).

[mathlib4#8116] Eric Wieser. feat(Data/Polynomial/AlgebraMap): more re-
sults for non-commutative polynomials. Reviewed by Yaël
Dillies and Johan Commelin. Nov. 2023 (cit. on p. 10).

[mathlib#4821] Eric Wieser. feat(data/dfinsupp): Port over the finsupp.lift_add_hom

API. Reviewed by Johan Commelin. Oct. 2020 (cit. on p. 10).
[mathlib#6105] Eric Wieser. refactor(linear_algebra/tensor_product): Use a

more powerful lemma for ext. Reviewed by Johan Commelin.
Feb. 2021 (cit. on p. 10).

[mathlib#6124] Eric Wieser. feat(linear_algebra/prod): add an ext lemma
that recurses into products. Reviewed by Johan Commelin.
Feb. 2021 (cit. on p. 10).

[mathlib#14803] Eric Wieser. feat(linear_algebra/clifford_algebra/of_alter-
nating): extend alternating maps to the exterior algebra. Re-
viewed by Oliver Nash. June 2022 (cit. on p. 10).

[mathlib#5640] Eric Wieser. feat(data/zsqrtd/to_real): Add to_real. Reviewed
by Johan Commelin, Mario Carneiro, Bryan Gin-ge Chen,
and Anne Baanen. Jan. 2021 (cit. on p. 10).

[mathlib#8641] Eric Wieser. feat(linear_algebra/basic, group_theory/quo-
tient_group, algebra/lie/quotient): ext lemmas for morphisms
out of quotients. Reviewed by Oliver Nash and Anne Baa-
nen. Aug. 2021 (cit. on p. 10).

https://github.com/leanprover-community/mathlib/pull/5484
https://github.com/leanprover-community/mathlib/pull/4297
https://github.com/leanprover-community/mathlib/pull/4430
https://github.com/leanprover-community/mathlib/pull/8783
https://github.com/leanprover-community/mathlib/pull/8105
https://github.com/leanprover-community/mathlib/pull/10730
https://github.com/leanprover-community/mathlib/pull/10754
https://github.com/leanprover-community/mathlib4/pull/6417
https://github.com/leanprover-community/mathlib4/pull/8116
https://github.com/leanprover-community/mathlib/pull/4821
https://github.com/leanprover-community/mathlib/pull/6105
https://github.com/leanprover-community/mathlib/pull/6124
https://github.com/leanprover-community/mathlib/pull/14803
https://github.com/leanprover-community/mathlib/pull/5640
https://github.com/leanprover-community/mathlib/pull/8641

	Chaining extensionality lemmasin Lean's Mathlib
	Introduction
	Chaining extensionality lemmas
	Wider applications
	Point-free statements
	Conclusion
	Acknowledgments
	References
	Extensionality lemmas contributed by the author
	Algebra morphisms
	Linear maps
	Other morphisms

	References
	Github references


