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1

Introduction

Warning. This book is still under construction. It aims to serve as both an introduction
and a reference manual for programming in the Lean theorem prover.

We are making this material public now because currently it is the only existing docu-
mentation for many of the specifics of the Lean programming language and its API, and
we are hoping that the information will be useful to brave souls experimenting with it at
this early stage. Most of the chapters are currently only stubs, but comments and feedback
on the material that is available will be helpful.

1.1 Lean as a Programming Language
This book can be viewed as a companion to Theorem Proving in Lean, which presents
Lean as a system for building mathematical libraries and stating and proving mathematical
theorems. From that perspective, the point of Lean is to implement a formal axiomatic
framework in which one can define mathematical objects and reason about them.

As noted in that book, however, expressions in Lean have a computational interpreta-
tion, which is to say, they can be evaluated. As long as it is defined in the computational
fragment of Lean’s foundational language, any closed term of type nat – that is, any term
of type nat without free variables – evaluates to a numeral. Similarly, any closed term of
type list nat evaluates to a list of numerals, and any closed term of type bool evaluates
either to the boolean value tt, for “true,” or ff, for “false.”

This provides another perspective on Lean: instead of thinking of it as a theorem prover
whose language just happens to have a computational interpretation, think of it as a pro-
gramming language that just happens to come equipped with a rich specification language
and an interactive environment for proving that programs meet their specifications. The

5

https://leanprover.github.io/theorem_proving_in_lean/


CHAPTER 1. INTRODUCTION 6

specification language and proof system are quite powerful, rich enough, in fact, to include
all conventional mathematics.

We will see that Lean’s underlying logical framework, the Calculus of Inductive Con-
structions, constitutes a surprisingly good programming language. It is expressive enough
to define all sorts of data structures, and it supports powerful abstractions. Programs
written in the language can be evaluated efficiently by Lean’s virtual-machine interpreter
or translated automatically to C++ and compiled.

Viewed from a computational perspective, the Calculus of Inductive Constructions is
an instance of a purely functional programming language. This means that a program in
Lean is simply an expression whose value is determined compositionally from the values
of the other expressions it refers to, independent of any sort of ambient state of computa-
tion. There is no notion of storing a result in memory or changing the value of a global
variable; computation is just evaluation of expressions. This paradigm makes it easier to
reason about programs and verify their correctness. At the same time, we will see that
Lean incorporates concepts and abstractions that make it feasible to use this paradigm in
practice.

The underlying foundational framework imposes one restriction that is alien to most
programming languages, namely, that every program is terminating. So, for example, every
“while” loop has to be explicitly bounded, though, of course, we can consider the result of
iterating an arbitrary computation n times for any given natural number n. We will see
that Lean provides flexible mechanisms for structural and well-founded recursion, allowing
us to define functions in natural ways. At the same, the system provides complementary
mechanisms for proving claims, using inductive principles that capture the structure of the
function definitions.

1.2 Examples
For example…

[Define something like factorial. Evaluate (use both reduce and eval).]
[Define operations on lists.]
[Prove things, like length (reverse l) = length l or reverse (reverse l) = l.]

1.3 Input and Output
People often want to write programs that interact with the outside world, querying users
for input and presenting them with output during the course of a computation. Lean’s
foundational framework has no model of “the real world,” but Lean declares get_str and
put_str commands to get an input string from the user and write an input string to output,
respectively. Within the foundational system, these are treated as black box operations.
But when programs are evaluated by Lean’s virtual machine or when they are translated
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to C++, they have the expected behavior. Here, for example, is a program that prints
“hello world”:

import system.io
variable [io.interface]
open io

def hello_world : io unit :=
put_str "hello world\n"

#eval hello_world

The next example prints the first 100 squares:

import system.io
variable [io.interface]
open nat io

def print_squares : N → io unit
| 0 := return ()
| (succ n) := print_squares n >>

put_str (nat.to_string n ++ "^2 = " ++
nat.to_string (n * n) ++ "\n")

#eval print_squares 100

We will explain the data type io unit in Chapter Monads. Although this program has
a real world side effect of sending output to the screen when run, that effect is invisible
to the formal foundation. From the latter’s perspective, the type constructor io and the
functions put_str and get_str are entirely opaque, objects about which that the axiomatic
system has nothing to say. The print axioms command shows that the expression hello
world depends on the constants io and put_str, which have been forcibly added to the
axiomatic system.

#print axioms hello_world

In this way, we can prove properties of programs involving io that do not depend in any
way on the particular results of the input and output.

1.4 Metaprogramming in Lean
Lean also allows metaprograms, which are Lean programs that involve objects and con-
structs that are not part of the axiomatic foundation. In particular:

• Metaprograms can use arbitrary recursive calls, with no concern for termination.
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• Metaprograms can access metaconstants, that is, primitive functions and objects
that are implemented internally in Lean and are not meant to be trusted by the
foundational framework.

Such definitions can be introduced using the keywords meta def instead of def and are
marked for special treatment. In particular, because they are not part of the axiomatic
foundation, they cannot appear as part of ordinary Lean definitions and theorems.

For example, the following definition computes McCarthy’s 91 function, without veri-
fying that the computation terminates on all inputs (though, in fact, it does):

meta def m91 : N → N
| n := if n > 100 then n - 10 else m91 (m91 (n + 11))

#eval m91 10
#eval m91 100
#eval m91 1000

We can print out the first 120 values of m91:

meta def print_m91 : N → io unit
| 0 := return ()
| (succ n) := print_m91 n >>

put_str ("m91 " ++ nat.to_string n ++ " = " ++
nat.to_string (m91 n) ++ "\n")

#eval print_m91 120

Of course, such uses of recursion are dangerous.

meta def foo : N → N
| n := foo n + 1

#reduce foo
-- #eval foo 0

Evaluating foo using the kernel evaluator shows that the implementation is a bit of a
hack; the term in the definition includes a macro which names foo itself. The virtual
machine that evaluates foo goes further, and carries out the recursive call, repeating this
until the process runs out of memory. It is a good thing that Lean will not allow foo to
appear in a theorem or in an ordinary definition; if we could prove foo = foo + 1 then,
substracting foo from both sides, we could prove 0 = 1, and hence a contradiction.

Although metaprograms can be used in various ways, its primary purpose is to provide
a means of extending the functionality of Lean, within Lean itself. For example, we can use
metaprograms to write new procedures, known as tactics, which help us construct proofs.
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This next example assumes you are familiar with the notion of a tactic, as described in
Theorem Proving in Lean.

The following code implements a tactic that, given any goal, repeatedly finds a hy-
pothesis h of the form a ∧ b, and replaces it by hypotheses (with fresh names) for a and
b.

meta def destruct_conjunctions : tactic unit :=
repeat (do
l ← local_context,
first $ l^.for (λ h, do

ht ← infer_type h >>= whnf,
match ht with
| `(and %%a %%b) := do

n ← mk_fresh_name,
mk_mapp ``and.left [none, none, some h] >>= assertv n a,
n ← mk_fresh_name,
mk_mapp ``and.right [none, none, some h] >>= assertv n b,
clear h

| _ := failed
end))

We will explain the details in Chapter 8 but, roughly speaking, the code repeats the
following action until there is nothing left to do: get the list of hypotheses in the local
context, find a hypothesis h whose type is a conjunction, add new hypotheses justified by
and.left h and and.right h to the local context, and then delete h. We can then use
destruct_conjunctions like any other Lean tactic.

example (a b c : Prop) (h : (a ∧ b) ∧ (c ∧ a)) : c :=
begin destruct_conjunctions >> assumption end

Note that the reason we can use such code to prove theorems without compromising the
integrity of the formal system is that Lean’s kernel always certifies the result. From a
foundational point of view, we don’t have to worry about the integrity of the code, only
the integrity of the resulting proofs.

1.5 Overview of the contents
To summarize, we can use Lean in any of the following ways:

• as a programming language

• as a system for verifying properties of programs

• as a system for writing metaprograms, that is, programs that extend the functionality
of Lean itself
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Chapters 2 to 7 explain how to use Lean as a programming language. It will be helpful
if you have some familiarity with the syntax and meaning of dependent type theory, for
example, as presented in Theorem Proving in Lean (henceforth TPL). But, if not, it is likely
that you will be able to pick up the details as we proceed. Similarly, if you are familiar
with functional programming, you will be able to move through the material more quickly,
but we will try to keep the presentation below self contained.

Chapter 4 in particular deals with the task of proving things about programs. Once
again, it will be helpful if you are familiar with the use of Lean as an interactive theorem
prover as described in TPL, but if not you are encouraged to forge ahead and refer back
to TPL as necessary.

Finally, Chapter 8 and Chapter 9 deal with metaprogramming aspects of Lean, and, in
particular, writing tactics and automation.
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Programming Basics

[This chapter should be a straightforward introduction to functional programming, with
examples using natural numbers, lists, strings, and so on. Cover if … then … else statements,
simple instances of matching and recursion. A fuller treatment of matching and recursion
will be given in Chapter ??]
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Data Structures

[Discuss the most common and useful structures, pairs, lists, enumeration types, structures.
Introduce subtypes with some simple examples, without including too much detail about
propositions and proofs.]
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Verifying Properties of Programs

[This chapter will have to assume some familiarity with Lean as a proof assistant. Give some
natural examples, for example, proving properties of functions of lists, sorting routines,
properties of the extended gcd. Discuss two styles: separating functions and properties,
and combining them, using subtypes.]

13
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Recursion

[Explain Lean’s function definition package, how to use well-founded recursion, and how
to prove things about general recursive functions. Explain how to define and use new
inductive types.]

14
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Type Classes

[Explain how to make things instances of common type classes, including arithmetic oper-
ations, string formatting operations, etc.]

15
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Monads

In this chapter, we will describe a powerful abstraction known as a monad. A monad is
a type constructor m : Type → Type that comes equipped with two special operations,
return and bind. If α is any type, think of m α as being a “virtual α,” or, as some people
describe it, “an α inside a box.”

For a given monad m, the function return has type Π {α : Type}, α → m α. The
idea is that for any element a : α, return a produces the virtual version of a, or puts a
inside the box.

Once we are inside the box, we cannot get out; there is no general way of taking an
element of m α and obtaining an element of α. But the bind operation gives us a way of
turning some operations on α into operations inside the monad. Specifically, for a given
monad m, the function bind has type Π {α β : Type}, m α → (α → m β) → m β.
Suppose we have a function f that, given any element a : α, produces a virtual element
of β; in more prosaic terms, f has type α → m β. Suppose also that we have a virtual
element of α, that is, ma : m α. If we could extract from ma a corresponding element a of
α, we could apply f to it to get a virtual element of β. We cannot do that in general, but
bind gives us a way of simulating the compound operation: it applies f directly “inside
the box,” and gives us an element of m β.

As an example of how bind and return can be used, given any function f : α →
β, we can get a function map f : m α → m β by defining map f ma to be bind ma (λ
a, return (f a). Roughly, given ma : m α, the bind reaches into the box, finds an
associated a, and then puts f a back into the box.

For another example, given any element mma : m (m α), the expression monad.bind
mma id has type m α. This means that even though we cannot in general extract an
element of β from m β, we can do it when β itself is a virtual type, m α. The expression

16
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monad.bind mma id reaches into the m (m α) box, catches hold of an element of m α, and
simply leaves it in the m α box.

If you have never come across the notion of a monad before, these operations will seem
quite mysterious. But instances of return and bind arise in many natural ways, and the
goal of this chapter is to show you some examples. Roughly, they arise in situations where
m is a type construction with the property that functions in the ordinary realm of types
can be transported, unformly, into functions in the realm of m-types. This should sound
quite general, and so it is perhaps not that surprising that monads be instantiated in many
different ways. The power of the abstraction is not only that it provides general functions
and notation the can be used in all these various instantiations, but also that it provides
a helpful way of thinking about what they all have in common.

Lean implements the following common notation. First, we have the infix notation

ma >>= f

for bind ma f. Think of this as saying “take an element a out of the box, and send it to
f.” Remember, we are allowed to do that as long as the return type of f is of the form m
β. We also have the infix notation,

ma >> mb

for bind ma (λ a, mb). This takes an element a out of the box, ignores it entirely, and
then returns mb. These two pieces of notation are most useful in situations where the act
of taking an element of the box can be viewed as inducing a change of state. In situations
like that, you can think of ma >>= f as saying “do ma, take the result, and then send it to
f.” You can then think of of ma >> mb more simply as “do ma, then do mb.” In this way,
monads provide a way of simulating features of imperative programming languages in a
functional setting. But, we will see, they do a lot more than that.

Thinking of monads in terms of performing actions while computing results is quite
powerful, and Lean provides notation to support that perspective. The expression

do a ← ma, t

is syntactic sugar for ma >>= (λ a, t). Here t is typically an expression that depends
on a, and it should have type m β for some β. So you can read do a ← ma, t as reaching
into the box, extracting an a, and then continuing the computation with t. Similarly, do
s, t is syntactic sugar for s >> t, supporting the reading “do s, then do t.” The notation
supports iteration, so, for example,

do a ← s,
b ← t,
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f a b,
return (g a b)

is syntactic sugar for

bind s (λ a, bind t (λ b, bind (f a b) (λ c, return (g a b)))).

It supports the reading “do s and extract a, do t and extract b, do f a b, then return the
value g a b.”

Incidentally, as you may have guessed, a monad is implemented as a type class in Lean.
In other words, return really has type

Π {m : Type → Type} [monad m] {α : Type}, α → m α},

and bind really has type

Π {m : Type → Type} [monad m] {α β : Type}, m α → (α → m β) → m β.

In general, the relevant monad can be inferred from the expressions in which bind and
return appear, and the monad structure is then inferred by type class inference.

There is a constraint, namely that when we use monads all the types we apply the
monad to have to live in the same type universe. When all the types in question appear as
parameters to a definition, Lean’s elaborator will infer that constraint. When we declare
variables below, we will satisfy that constraint by explicitly putting them in the same
universe.

7.1 The option monad
The option constructor provides what is perhaps the simplest example of a monad. Recall
that an element of option α is either of the form some a for some element a : α, or none.
So an element a of option α is a “virtual α” in the sense of being either an element of α
or an empty promise.

The associated return is just some: given an element a of α, some a returns a virtual
α. It is also clear that we cannot go in the opposite direction: given an element ma :
option α, there is no way, in general, of producing an element of α. But we can simulate
extraction of such an element as long as we are willing to stay in the virtual land of options,
by defining bind as follows:

def bind {α β : Type} (oa : option α) (f : α → option β) :
option β :=

match oa with
| (some a) := f a
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| none := none
end

If the element oa is some a, we can simply apply f to a, and otherwise we simply return
none. Notice how the do notation allows us to chain these operations:

universe u
variables {α β γ δ : Type.{u}} (oa : option α)
variables (f : α → option β) (g : α → β → option γ)

(h : α → β → γ → option δ)

example : option β :=
do a ← oa,

b ← f a,
return b

example : option δ :=
do a ← oa,

b ← f a,
c ← g a b,
h a b c

Think of f, g, and h as being partial functions on their respective domains, where a return
value of none indicates that the function is undefined for the given input. Intuitively,
the second example above returns h a (f a) (g a (f a)), assuming oa is some a and
all the subterms of that expression are defined. The expression h a (f a) (g a (f a))
does not actually type check; for example, the second argument of h should be of type β
rather than option β. But monadic notation allows us to simulate the computation of a
possibly undefined term, where the bind operation serves to percolate a value of none to
the output.

7.2 The list monad
Our next example of a monad is the list monad. In the last section we thought of a
function f : α → option β as a function which, on input α, possibly returns an ele-
ment of β. Now we will think of a function f : α → list β as a function which, on
input α, returns a list of possible values for the output. This monad is sometimes also
called the nondeterministic monad, since we can think of f as a computation which may
nondeterministically return any of the elements in the list.

It is easy to insert a value a : α into list α; we define return a to be just the
singleton list [a]. Now, given la : list α and f : α → list β, how should we define
the bind operation la >>= f? Intuitively, la represents any of the possible values occurring
in the list, and for each such element a, f may return any of the elements in f a. We can
then gather all the possible values of the virtual application by applying f to each element
of la and merging the results into a single list:
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def bind {α β : Type} (la : list α) (f : α → list β) : list β :=
join (map f la)

Since the example in the previous section used nothing more than generic monad operations,
we can replay it in the list setting:

universe u
variables {α β γ δ : Type.{u}} (la : list α)
variables (f : α → list β) (g : α → β → list γ)

(h : α → β → γ → list δ)

example : list δ :=
do a ← la,

b ← f a,
c ← g a b,
h a b c

Now think of the computation as representing the list of all possible values of the expression
h a (f a) (g a (f a)), where the bind percolates all possible values of the subexpres-
sions to the final output.

Notice that the final output of the expression is a list, to which we can then apply any
of the usual functions that deal with lists:

open list

variables {α β γ δ : Type} (la : list α)
variables (f : α → list β) (g : α → β → list γ) (h : α → β → γ → list δ)

example : N :=
length
(do a ← la,

b ← f a,
c ← g a b,
h a b c)

We can also move length inside the do expression, but then the output lives in N instead
of a list. As a result, we need to use return to put the result in a monad:

open list

variables {α β γ δ : Type} (la : list α)
variables (f : α → list β) (g : α → β → list γ)

(h : α → β → γ → list δ)

example : list N :=
do a ← la,

b ← f a,
c ← g a b,
return (length (h a b c))
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7.3 The state monad
Let us indulge in science fiction for a moment, and suppose we wanted to extend Lean’s
programming language with three global registers, x, y, and z, each of which stores a
natural number. When evaluating an expression g (f a) with f : α → β and g : β
→ γ, f would start the computation with the registers initialized to 0, but could read and
write values during the course of its computation. When g began its computation on f a,
the registers would be set they way that f left them, and g could continue to read and
write values. (To avoid questions as to how we would interpret the flow of control in terms
like h (k1 a) (k2 a), let us suppose that we only care about composing unary functions.)

There is a straightforward way to implement this behavior in a functional programming
language, namely, by making the state of the three registers an explicit argument. First,
let us define a data structure to hold the three values, and define the initial settings:

structure registers : Type := (x : N) (y : N) (z : N)

def init_reg : registers := registers.mk 0 0 0

Now, instead of defining f : α → β that operates on the state of the registers implicitly,
we would define a function f0 : α × registers → β × registers that operates on
it explicitly. The function f0 would take an input a : α, paired with the state of the
registers at the beginning of the computation. It could the do whatever it wanted to the
state, and return an output b : β paired with the new state. Similarly, we would replace
g by a function g0 : β × registers → γ × registers. The result of the composite
computation would be given by (g0 (f0 (a, init_reg))).1. In other words, we would
pair the value a with the initial setting of the registers, apply f0 and then g0, and take the
first component. If we wanted to lay our hands on the state of the registers at the end of
the computation, we could do that by taking the second component.

The biggest problem with this approach is the annoying overhead. To write functions
this way, we would have to pair and unpair arguments and construct the new state explicitly.
A key virtue of the monad abstraction is that it manages boilerplate operations in situations
just like these.

Indeed, the monadic solution is not far away. By currying the input, we could take the
input of f0 equally well to be α → registers → β × registers. Now think of f0 as
being a function which takes an input in α and returns an element of registers → β
× registers. Moreover, think of this output as representing a computation which starts
with a certain state, and returns a value of β and a new state. Lo and behold, that is the
relevant monad.

To be precise: for any type α, the monad m α we are after is registers → α ×
registers. We will call this the state monad for registers. With this notation, the
function f0 described above has type α → m β, the function g0 has type β → m γ, and
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the composition of the two on input a is f a >>= g. Notice that the result is an element
of m γ, which is to say, it is a computation which takes any state and returns a value of γ
paired with a new state. With do notation, we would express this instead as do b ← f a,
g b. If we want to leave the monad and extract a value in γ, we can apply this expression
to the initial state init_reg, and take the first element of the resulting pair.

The last thing to notice is that there is nothing special about registers here. The
same trick would work for any data structure that we choose to represent the state of a
computation at a given point in time. We could describe, for example, registers, a stack, a
heap, or any combination of these. For every type S, Lean’s library defines the state monad
state S to be the monad that maps any type α to the type S → α × S. The particular
monad described above is then simply state registers.

Let us consider the return and bind operations. Given any a : α, return a is given
by λ s, (a, s). This represents the computation which takes any state s, leaves it
unchanged, and inserts a as the return value. The value of bind is tricker. Given an sa :
state S α and an f : α → state S β, remember that bind sa f is supposed to “reach
into the box,” extract an element a from sa, and apply f to it inside the monad. Now, the
result of bind sa f is supposed to be an element of state S β, which is really a function
S → β × S. In other words, bind sa f is supposed to encode a function which operates
on any state to produce an element of β and a new state. Doing so is straightforward:
given any state s, sa s consists of a pair (a, s0), and applying f to a and then s0 yields
the required element of β × S. Thus the def of bind sa f is as follows:

λ s, match (sa s) with (a, s0) := b a s0

The library also defines operations read and write as follows:

def read {S : Type} : state S S :=
λ s, (s, s)

def write {S : Type} : S → state S unit :=
λ s0 s, ((), s0)

With the argument S implicit, read is simply the state computation that does not change
the current state, but also returns it as a value. The value write s0 is the state compu-
tation which replaces any state s by s0 and returns unit. Notice that it is convenient to
use unit for the output type any operation that does not return a value, though it may
change the state.

Returning to our example, we can implement the register state monad and more focused
read and write operations as follows:

def init_reg : registers :=
registers.mk 0 0 0
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@[reducible] def reg_state := state registers

def read_x : reg_state N :=
do s ← read, return (registers.x s)

def read_y : reg_state N :=
do s ← read, return (registers.y s)

def read_z : reg_state N :=
do s ← read, return (registers.z s)

def write_x (n : N) : reg_state unit :=
do s ← read,

write (registers.mk n (registers.y s) (registers.z s))

def write_y (n : N) : reg_state unit :=
do s ← read,

write(registers.mk (registers.x s) n (registers.z s))

def write_z (n : N) : reg_state unit :=
do s ← read,

write (registers.mk (registers.x s) (registers.y s) n)

We can then write a little register program as follows:

open nat

def foo : reg_state N :=
do write_x 5,

write_y 7,
x ← read_x,
write_z (x + 3),
y ← read_y,
z ← read_z,
write_y (y + z),
y ← read_y,
return (y + 2)

To see the results of this program, we have to “run” it on the initial state:

#reduce foo init_reg

The result is the pair (17, {x := 5, y := 15, z := 8}), consisting of the return value,
y, paired with the values of the three registers.

7.4 The IO monad
We can finally explain how Lean handles input and output: the constant io is axiomatically
declared to be a monad with certain supporting operations. It is a kind of state monad,
but in contrast to the ones discussed in the last section, here the state is entirely opaque to
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Lean. You can think of the state as “the real world,” or, at least, the status of interaction
with the user. Lean’s axiomatically declared constants include the following:

import system.io
open io

#check (@put_str : Π [ioi : io.interface], string → io unit)
#check (@get_line : Π [ioi : io.interface], io string)

Here io.interface is a type class packing information needed to interpret the input output
interface. Users can instantiate that type class in different ways, but they can also leave
these variables uninstantiated in calls to Lean’s virtual machine, which then substitutes
the usual terminal io operations.

The expression put_str s changes the io state by writing s to output; the return
type, unit, indicates that no meaningful value is returned. The expression put_nat n
does the analogous thing for a natural number, n. The expression get_line, in contrast;
however you want to think of the change in io state, a string value is returned inside
the monad. When we use the native virtual machine interpretation, thinking of the io
monad as representing a state is somewhat heuristic, since within the Lean language, there
is nothing that we can say about it. But when we run a Lean program, the interpreter
does the right thing whenever it encounters the bind and return operations for the monad,
as well as the constants above. In particular, in the example below, it ensures that the
argument to put_nat is evaluated before the output is sent to the user, and that the
expressions are printed in the right order.

#eval put_str "hello " >> put_str "world!" >> put_str (to_string (27 * 39))

[TODO: somewhere – probably in a later chapter? – document the format type and
operations.]

7.5 Related type classes
In addition to the monad type class, Lean defines all the following abstract type classes
and notations.

universe variables u v

class functor (F : Type u → Type v) : Type (max u+1 v) :=
(map : Π {α β : Type u}, (α → β) → F α → F β)

@[inline] def fmap {F : Type u → Type v} [functor F] {α β : Type u} : (α → β) → F α → F β :=
functor.map

infixr ` <$> `:100 := fmap
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class applicative (F : Type u → Type v) extends functor F : Type (max u+1 v):=
(pure : Π {α : Type u}, α → F α)
(seq : Π {α β : Type u}, F (α → β) → F α → F β)

@[inline] def pure {F : Type u → Type v} [applicative F] {α : Type u} : α → F α :=
applicative.pure F

@[inline] def seq_app {α β : Type u} {F : Type u → Type v} [applicative F] : F (α → β) → F α → F β :=
applicative.seq

infixr ` <*> `:2 := seq_app

class alternative (F : Type u → Type v) extends applicative F : Type (max u+1 v) :=
(failure : Π {α : Type u}, F α)
(orelse : Π {α : Type u}, F α → F α → F α)

@[inline] def failure {F : Type u → Type v} [alternative F] {α : Type u} : F α :=
alternative.failure F

@[inline] def orelse {F : Type u → Type v} [alternative F] {α : Type u} : F α → F α → F α :=
alternative.orelse

infixr ` <|> `:2 := orelse

@[inline] def guard {F : Type → Type v} [alternative F] (P : Prop) [decidable P] : F unit :=
if P then pure () else failure

The monad class extends both functor and applicative, so both of these can be seen as
even more abstract versions of monad. On the other hand, not every monad is alternative,
and in the next chapter we will see an important example of one that is. One way to
think about an alternative monad is to think of it as representing computations that can
possibly fail, and, moreover, Intuitively, an alternative monad can be thought of supporting
definitions that say “try a first, and if that doesn’t work, try b.” A good example is the
option monad, in which we can think of an element none as a computation that has failed.
If a and b are elements of option α for some type α, we can define a <|> b to have the
value a if a is of the form some a0, and b otherwise.
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Writing Tactics

8.1 A First Look at the Tactic Monad
The canonical way to invoke a tactic in Lean is to use the by keyword within a Lean
expression. Suppose we write the following:

open tactic

variables a b : Prop

example : a → b → a ∧ b :=
by _

Lean expects something of type tactic unit to fill the underscore, where tactic refers to
the tactic monad. When the elaborator processes this definition, it elaborates everything
outside the by invocation first (in this case, just the statement of the theorem), and then
calls on the Lean virtual machine to execute the tactic. When doing so, the virtual ma-
chine interprets any axiomatically declared meta constant as references to internal Lean
functions that implement the functionality of the tactic monad.

The tactic monad can be thought of as a combination of a state monad (where the
internal “state” as accessed and acted on by the meta constant primitives) and the option
monad. Because it is a monad, we have the usual do notation. So, if r, s, and t are tactics,
you should think of

do a ← r,
b ← s,
t

26



CHAPTER 8. WRITING TACTICS 27

as meaning “apply tactic r to the state, and store the return result in a; apply tactic s
to the state, and store the return result in b; then, finally, apply tactic t to the state.”
Moreover, any tactic can fail, which is analogous to a return value of none in the option
monad. In the example above, if any of r, s, or t fail, then the compound expression has
failed.

There is an additional, really interesting feature of the tactic monad: it is an alternative
monad, in the sense described at the end of the last chapter. This is used to implement
backtracking. If s and t are monads, the expression s <|> t can be understood as follows:
“do s, and if that succeeds, return the corresponding return value; otherwise, undo any
changes to the state that s may have produced, and do t instead.” This allows us to try s
and, if it fails, go on to try t as though the first attempt never happened.

When the tactic expression after a by is invoked, the tactic wakes up and says “Whoa!
I’m in a monad!” This is just a colorful way of saying that the virtual machine expects a
function that acts on the tactic state in a certain way, and interprets primitive operations
on the tactic state in terms of functions that are implemented internal to Lean. At any
rate, when it wakes up, it can start to look around and assess its current state. The goal
of this section is to give you a first look at of some of the things it can do there. Don’t
worry if some of the expressions seem mysterious; they will be explained in the sections
that follow.

One thing the tactic can do is print a message to the outside world:

example : a → b → a ∧ b :=
by do trace "Hi, Mom!"

When the file is executed, Lean issues an error message to the effect that the tactic has
failed to fill the relevant placeholder, which is what it is supposed to do. But the trace
message is printed during the execution, providing us with a glimpse of its inner workings.
We can actually trace value of any type that Lean can coerce to a string output, and we
will see that this includes a number of useful types.

Another thing we can do is trace the current tactic state:

example : a → b → a ∧ b :=
by do trace "Hi, Mom!",

trace_state

Now the output includes the list of goals that are active in the tactic state, each with a
local context that includes the local variables and hypotheses. In this case there is only
one:

Hi, Mom!
a b : Prop
⊢ a → b → a ∧ b
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This points to an important fact: the internal, and somewhat mysterious, tactic state
includes at least a list of goals. In fact, it includes much more: every tactic is invoked in
a rich environment that includes all the objects and declarations that are present when
the tactic is invoked, as well as notations, option declarations, and so on. In most cases,
however, the list of goals is most directly relevant to the task at hand.

Let us dispense with the trace messages now, and start to prove the theorem by intro-
ducing the first two hypotheses.

example : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
skip

The backticks indicate that h1 and h2 are names; we will discuss these below. The tactic
skip is a do-nothing tactic, simply included to ensure that the resulting expression has
type tactic unit.

We can now do some looking around. The meta_constant called target has type
tactic expr, and returns the type of the goal. The type expr, like name, will be discussed
below; it is designed to reflect the internal representation of Lean expressions, so, roughly,
via meta-programming glue, the expr type allows us to manipulate Lean expressions in
Lean itself. In particular, we can ask the tactic to print the current goal:

example : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
target >>= trace

In this case, the output is a ∧ b, as we would expect. We can also ask the tactic to print
the elements of the local context.

example : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
local_context >>= trace

This yields the list [a, b, h1, h2]. We already happen to have representations of h1
and h2, because they were returned by the intro tactic. But we can extract the other
expressions in the local context given their names:

example : a → b → a ∧ b :=
by do intro `h1,

intro `h2,
ea ← get_local `a,
eb ← get_local `b,
trace (to_string ea ++ ", " ++ to_string eb),
skip
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Notice that ea and eb are different from a and b; they have type expr rather than Prop.
They are the internal representations of the latter expressions. At present, there is not
much for us to do with these expressions other than print them out, so we will drop them
for now.

In any case, to prove the goal, we can proceed to invoke any of the Lean’s standard
tactics. For example, this will work:

example : a → b → a ∧ b :=
by do intro `h1,

intro `h2,
split,
repeat assumption

We can also do it in a more hands-on way:

example : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
mk_const ``and.intro >>= apply,
exact eh1,
exact eh2

The double-backticks will also be explained below, but the general idea is that the third
line of the tactic builds an expr that reflects the and.intro declaration in the Lean envi-
ronment, and applies it. The applyc tactic combines these two steps:

example : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
applyc ``and.intro,
exact eh1,
exact eh2

We can also finish the proof as follows:

example : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
e ← to_expr ```(and.intro h1 h2),
exact e

Here, the construct ```(...) is used to build a pre-expression, the tactic to_expr elab-
orates it and converts it to an expression, and the exact tactic applies it. In the next
section, we will see even more variations on constructions like these, including tactics that
would enable us to construct the expression and.intro h1 h2 more explicitly.

The do block in this example has type tactic unit, and can be broken out as an
independent tactic.
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meta def my_tactic : tactic unit :=
do eh1 ← intro `h1,

eh2 ← intro `h2,
e ← to_expr ``(and.intro %%eh1 %%eh2),
exact e

example : a → b → a ∧ b :=
by my_tactic

Of course, my_tactic is not a very exciting tactic; we designed it to prove one particular
theorem, and it will only work on examples that have the very same shape. But we can write
more intelligent tactics that inspect the goal, the local hypotheses, and the environment,
and then do more useful things. The mechanism is exactly the same: we construct an
expression of type tactic unit, and ask the virtual machine to execute it at elaboration
time to solve the goal at hand.

8.2 Names and Expressions
Suppose we write an ordinary tactic proof in Lean:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
begin
split,
exact and.right h,
exact and.left h

end

This way of writing the tactic proof suggests that the h in the tactic block refers to the
expression h : a ∧ b in the list of hypotheses. But this is an illusion; what h really refers
to is the first hypothesis named h that is in the local context of the goal in the state when
the tactic is executed. This is made clear, for example, by the fact that earlier lines in the
proof can change the name of the hypothesis:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
begin

revert h,
intro h',
split,
exact and.right h',
exact and.left h'

end

Now writing exact and.right h would make no sense. We could, alternatively, contrive
to make h denote something different from the original hypothesis. This often happens
with the cases and induction tactics, which revert hypotheses, peform an action, and
then reintroduce new hypotheses with the same names.
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Metaprogramming in Lean requires us to be mindful of and explicit about the distinc-
tion between expressions in the current environment, like h : a ∧ b in the hypothesis of
the example, and the Lean objects that we use to act on the tactic state, such as the name
“h” or an object of type expr. Without using the begin...end front end, we can construct
the proof as follows:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

to_expr ```(and.right h) >>= exact,
to_expr ```(and.left h) >>= exact

This tells Lean to elaborate the expressions and.right h and and.left h in the context
of the current goal, and then apply them. The begin...end construct is essentially a front
end that interprets the proof above in these terms.

To understand what is going on in situations like this, it is important to know that
Lean’s metaprogramming framework provides three distinct Lean types that are relevant
to constructing syntactic expressions:

• the type name, representing hierarchical names

• the type expr, representing expressions

• the type pexpr, representing pre-expressions

Let us consider each one of them, in turn.
Hierarchical names are denoted in ordinary .lean files with expressions like foo.bar.baz

or nat.mul_comm. They are used as identifiers that reference defined constants in Lean,
but also for local variables, attributes, and other objects. Their Lean representations are
defined in init/meta/name.lean, together with some operations that can be performed
on them. But for many purposes we can be oblivious to the details. Whenever we type
an expression that begins with a backtick that is not followed by an open parenthesis,
Lean’s parser translates this to the construction of the associated name. In other words,
`nat.mul_comm is simply notation for the compound name with components nat and
mul_comm.

When metaprogramming, we often use names to refer to definitions and theorems in
the Lean environment. In situations like that, it is easy to make mistakes. In the example
below, the tactic definition is accepted, but its application fails:

open tactic

namespace foo

theorem bar : true := trivial

meta def my_tac : tactic unit :=
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mk_const `bar >>= exact

-- example : true := by my_tac -- fails

end foo

The problem is that the proper name for the theorem is foo.bar rather than bar; if
we replace `bar by `foo.bar, the example is accepted. The mk_const tactic takes an
arbitrary name and attempts to resolve it when the tactic is invoked, so there is no error in
the definition of the tactic. The error is rather that when we wrote `bar we had in mind
a particular theorem in the environment at the time, but we did not identify it correctly.

For situations like these, Lean provides double-backtick notation. The following exam-
ple succeeds:

open tactic

namespace foo

theorem bar : true := trivial

meta def my_tac : tactic unit :=
mk_const ``bar >>= exact

example : true := by my_tac -- fails

end foo

It also succeeds if we replace ``bar by ``foo.bar. The double-backtick asks the parser to
resolve the expression with the name of an object in the environment at parse time, and
insert the relevant name. This has two advantages:

• if there is no such object in the environment at the time, the parser raises an error;
and

• assuming it does find the relevant object in the environment, it inserts the full name
of the object, meaning we can use abbreviations that make sense in the context where
we are writing the tactic.

As a result, it is a good idea to use double-backticks whenever you want to refer to an
existing definition or theorem.

When writing tactics, it is often necessary to generate a fresh name. You can use
mk_fresh_name for that:

example (a : Prop) : a → a :=
by do n ← mk_fresh_name,

intro n,
hyp ← get_local n,
exact hyp
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The type expr reflects the internal representation of Lean expressions. It is defined
inductively in the file expr.lean, but when evaluating expressions that involve terms of
type expr, the virtual machine uses the internal C++ representations, so each constructor
and the eliminator for the type are translated to the corresponding C++ functions. Expres-
sions include the sorts Prop, Type1, Type2, …, constants of each type, applications, lambdas,
Pi types, and let definitions. They also include de Bruijn indices (with constructor var),
metavariables, local constants, and macros.

The whole purpose of tactic mode is to construct expressions, and so this data type is
fundamental. We have already seen that the target tactic returns the current goal, which
is an expression, and that local_context returns the list of hypotheses that can be used
to solve the current goal, that is, a list of expressions.

Returning to the example at the start of this section, let us consider ways of constructing
the expressions and.left h and and.right h more explicitly. The following example uses
the mk_mapp tactic.

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
mk_mapp ``and.right [none, none, some eh] >>= exact,
mk_mapp ``and.left [none, none, some eh] >>= exact

In this example, the invocations of mk_mapp retrieve the definition of and.right and
and.left, respectively. It makes no difference whether the arguments to those theorems
have been marked implicit or explicit; mk_mapp ignores those annotations, and simply ap-
plies that theorem to all the arguments in the subsequent list. Thus the first argument
to mk_mapp is a name, while the second argument has type list (option expr). Each
none entry in the list tells mk_mapp to treat that argument as implicit and infer it using
type inference. In contrast, an entry of the form some t specifies t as the corresponding
argument.

The tactic mk_app is an even more rudimentary application builder. It takes the name
of the operator, followed by a complete list of its arguments.

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

ea ← get_local `a,
eb ← get_local `b,
eh ← get_local `h,
mk_app ``and.right [ea, eb, eh] >>= exact,
mk_app ``and.left [ea, eb, eh] >>= exact

You can send less than the full list of arguments to mk_app, but the arguments you send
are assumed to be the final arguments, with the earlier ones made implicit. Thus, in
the example above, we could send instead [eb, eh] or simply [eh], because the earlier
arguments can be inferred from these.
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example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
mk_app ``and.right [eh] >>= exact,
mk_app ``and.left [eh] >>= exact

Finally, as indicated in the last section, you can also use mk_const to construct a constant
expression from the corresponding name:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
mk_const ``and.right >>= apply,
exact eh,
mk_const ``and.left >>= apply,
exact eh

We have also seen above that it is possible to use to_expr to elaborate expressions at
executation time, in the context of the current goal.

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

to_expr ```(and.right h) >>= exact,
to_expr ```(and.left h) >>= exact

Here, the expressions ```(and.right h) and ```(and.left h) are pre-expressions, that
is, objects of type pexpr. The interface to pexpr can be found in the file pexpr.lean, but
the type is largely opaque from within Lean. The canonical use is given by the example
above: when Lean’s parser encounters an expression of the form ```(...), it constructs
the corresponding pexpr, which is simply an internal representation of the unelaborated
term. The to_expr tactic then sends that object to the elaborator when the tactic is
executed.

Note that the backtick is used in two distinct ways: an expression of the form `n,
without the parentheses, denotes a name, whereas an expression of the form `(...), with
parentheses, denotes a pexpr. Though this may be confusing at first, it is easy to get used
to the distinction, and the notation is quite convenient.

Lean’s pre-expression mechanism also supports the use of anti-quotation, which allows
a tactic to tell the elaborator to insert an expression into a pre-expression at runtime.
Returning to the example above, suppose we are in a situation where instead of the name
h, we have the corresponding expression, eh, and want to use that to construct the term.
We can insert it into the pre-expression by preceding it with a double-percent sign:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
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to_expr ``(and.right %%eh) >>= exact,
to_expr ``(and.left %%eh) >>= exact

When the tactic is executed, Lean elaborates the pre-expressions given by ``(...), with the
expression eh inserted in the right place. The difference between ``(...) and ```(...)
is that the first resolves the names contained in the expression when the tactic is defined,
whereas the second resolves them when the tactic is executed. Since the only name oc-
curring in and.left %%eh is and.left, it is better to resolve it right away. However, in
the expression and.right h above, h only comes into existence when the tatic is executed,
and so we need to use the triple backtick.

[TODO: describe `(...), and improve the explanations]

8.3 Examples
When it comes to writing tactics, you have all the computable entities of Lean’s standard
library at your disposal, including lists, natural numbers, strings, product types, and so
on. This makes the tactic monad a powerful mechanism for writing metaprograms. Some
of Lean’s most basic tactics are implemented internally in C++, but many of them are
defined from these in Lean itself.

The entry point for the tactic library is the file init/meta/tactic.lean, where you
can find the details of the interface, and see a number of basic tactics implemented in Lean.
For example, here is the definition of the assumption tactic:

meta def find_same_type : expr → list expr → tactic expr
| e [] := failed
| e (h :: hs) :=

do t ← infer_type h,
(unify e t >> return h) <|> find_same_type e hs

meta def assumption : tactic unit :=
do ctx ← local_context,

t ← target,
h ← find_same_type t ctx,
exact h

<|> fail "assumption tactic failed"

The expression find_same_type t es tries to find in es an expression with type defini-
tionally equal to t in the list of expressions es, by a straightforward recursion on the list.
The infer_type tactic calls Lean’s internal type inference mechanism to infer to the type
of an expression, and the unify tactic (which will be discussed further in Section Section
8.6 tries to unify two expressions, instantiating metavariables if necessary. Note the use of
the orelse notation: if the unification fails, the procedure backtracks and continues to try
the remaining elements on the list. The fail tactic announces failure with a given string.
The failed tactic simply fails with a generic message, “tactic failed.”
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One can even manipulate data structures that include tactics themselves. For example,
the first tactic takes a list of tactics, and applies the first one that succeeds:

meta def first {α : Type} : list (tactic α) → tactic α
| [] := fail "first tactic failed, no more alternatives"
| (t::ts) := t <|> first ts

It fails if none of the tactics on the list succeeds. Consider the example from Section 1.4
of the Introduction:

meta def destruct_conjunctions : tactic unit :=
repeat (do
l ← local_context,
first $ l.map (λ h, do

ht ← infer_type h >>= whnf,
match ht with
| `(and %%a %%b) := do

n ← get_unused_name `h none,
mk_mapp ``and.left [none, none, some h] >>= assertv n a,
n ← get_unused_name `h none,
mk_mapp ``and.right [none, none, some h] >>= assertv n b,
clear h

| _ := failed
end))

The repeat tactic simply repeats the inner block until it fails. The inner block starts by
getting the local context. The expression l.map ... is just shorthand for list.map ...
l; it applies the function in ... to each element of l and returns the resulting list, in
this case a list of tactics. The first function then calls each one sequentially until one
of them succeeds. Note the use of the dollar-sign for function application. In general, an
expression f $ a denotes nothing more than f a, but the binding strength is such that
you do not need to use extra parentheses when a is a long expression. This provides a
convenient idiom in situations exactly like the one in the example.

Some of the elements of the body of the main loop will now be familiar. For each
element h of the context, we infer the type of h, and reduce it to weak head normal form.
(We will discuss weak head normal form in the next section.) Assuming the type is an and,
we construct the terms and.left h and and.right h and add them to the context with
a fresh name. The clear tactic then deletes h itself.

Remember that when writing meta defs you can carry out arbitrary recursive calls,
without any guarantee of termination. You should use this with caution when writing
tactics; if there is any chance that some unforseen circumstance will result in an infinite
loop, it is wiser to use a large cutoff to prevent the tactic from hanging. Even the repeat
tactic is implemented as a finite iteration:

meta def repeat_at_most : nat → tactic unit → tactic unit
| 0 t := skip
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| (succ n) t := (do t, repeat_at_most n t) <|> skip

meta def repeat : tactic unit → tactic unit :=
repeat_at_most 100000

But 100,000 iterations is still enough to get you into trouble if you are not careful.

8.4 Reduction
[This section still under construction. It will discuss the various types of reduction, the
notion of weak head normal form, and the various transparency settings. It will use some
of the examples that follow.]

open tactic

set_option pp.beta false

section
variables {α : Type} (a b : α)

example : (λ x : α, a) b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 >>= trace,
reflexivity

| none := failed
end

example : (λ x : α, a) b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 transparency.none >>= trace,
reflexivity

| none := failed
end

attribute [reducible]
definition foo (a b : α) : α := a

example : foo a b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 transparency.none >>= trace,
reflexivity

| none := failed
end

example : foo a b = a :=
by do goal ← target,

match expr.is_eq goal with
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| (some (e1, e2)) := do trace e1,
whnf e1 transparency.reducible >>= trace,
reflexivity

| none := failed
end

end

8.5 Metavariables and Unification
[This section is still under construction. It will discuss the notion of a metavariable and
its local context, with the interesting bit of information that goals in the tactic state are
nothing more than metavariables. So the goal list is really just a list of metavariables,
which can help us make sense of the get_goals and set_goals tactics. It will also discuss
the unify tactic.]
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Writing Automation

The goal of this chapter is to provide some examples that illustrate the ways that metapro-
gramming in Lean can be used to implement automated proof procedures.

9.1 A Tableau Prover for Classical Propositional Logic
In this section, we design a theorem prover that is complete for classical propositional logic.
The method is essentially that of tableaux theorem proving, and, from a proof-theoretic
standpoint, can be used to demonstrate the completeness of cut-free sequent calculi.

The idea is simple. If a, b, c, and d are formulas of propositional logic, the sequent a,
b, c ⊢ d represents the goal of proving that d follows from a, b and c, and d. The fact
that they are propositional formulas means that they are built up from variables of type
Prop and the constants true and false using the connectives ∧ ∨ → ↔ ¬. The proof
procedure proceeds as follows:

• Negate the conclusion, so that the goal becomes a, b, c, ¬ d ⊢ false.

• Put all formulas into negation-normal form. In other words, eliminate → and ↔ in
terms of the other connectives, and using classical identities to push all equivalences
inwards.

• At that stage, all formulas are built up from literals (propositional variables and
negated propositional variables) using only ∧ and ∨. Now repeatedly apply all of the
following proof steps:

– Reduce a goal of the form Γ, a ∧ b ⊢ false to the goal Γ, a, b ⊢ false,
where Γ is any set of propositional formulas.
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– Reduce a goal of the form Γ, a ∨ b ⊢ false to the pair of goals Γ, a ⊢
false and Γ, b ⊢ false.

– Prove any goal of the form Γ, a, ¬ a ⊢ false in the usual way.

It is not hard to show that this is complete. Each step preserves validity, in the sense
that the original goal is provable if and only if the new ones are. And, in each step, the
number of connectives in the goal decreases. If we ever face a goal in which the first two
rules do not apply, the goal must consist of literals. In that case, if the last rule doesn’t
apply, then no propositional variable appears with its negation, and it is easy to cook up
a truth assignment that falsifies the goal.

In fact, our procedure will work with arbitrary formulas at the leaves. It simply applies
reductions and rules as much as possible, so formulas that begin with anything other than
a propositional connective are treated as black boxes, and act as propositional atoms.

First, let us open the namespaces we will use:

open expr tactic classical

The next step is to gather all the facts we will need to put formulas in negation-normal
form.

section logical_equivalences
local attribute [instance] prop_decidable
variables {a b : Prop}

theorem not_not_iff (a : Prop) : ¬¬a ↔ a :=
iff.intro classical.by_contradiction not_not_intro

theorem implies_iff_not_or (a b : Prop) : (a → b) ↔ (¬ a ∨ b) :=
iff.intro

(λ h, if ha : a then or.inr (h ha) else or.inl ha)
(λ h, or.elim h (λ hna ha, absurd ha hna) (λ hb ha, hb))

theorem not_and_of_not_or_not (h : ¬ a ∨ ¬ b) : ¬ (a ∧ b) :=
assume ⟨ha, hb⟩, or.elim h (assume hna, hna ha) (assume hnb, hnb hb)

theorem not_or_not_of_not_and (h : ¬ (a ∧ b)) : ¬ a ∨ ¬ b :=
if ha : a then

or.inr (show ¬ b, from assume hb, h ⟨ha, hb⟩)
else

or.inl ha

theorem not_and_iff (a b : Prop) : ¬ (a ∧ b) ↔ ¬a ∨ ¬b :=
iff.intro not_or_not_of_not_and not_and_of_not_or_not

theorem not_or_of_not_and_not (h : ¬ a ∧ ¬ b) : ¬ (a ∨ b) :=
assume h1, or.elim h1 (assume ha, h^.left ha) (assume hb, h^.right hb)

theorem not_and_not_of_not_or (h : ¬ (a ∨ b)) : ¬ a ∧ ¬ b :=
and.intro (assume ha, h (or.inl ha)) (assume hb, h (or.inr hb))
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theorem not_or_iff (a b : Prop) : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b :=
iff.intro not_and_not_of_not_or not_or_of_not_and_not

end logical_equivalences

We can now use Lean’s built-in simplifier to do the normalization:

meta def normalize_hyp (lemmas : list expr) (hyp : expr) : tactic unit :=
do try (simp_at hyp lemmas)

meta def normalize_hyps : tactic unit :=
do hyps ← local_context,

lemmas ← monad.mapm mk_const [``iff_iff_implies_and_implies,
``implies_iff_not_or, ``not_and_iff, ``not_or_iff, ``not_not_iff,
``not_true_iff, ``not_false_iff],

monad.for' hyps (normalize_hyp lemmas)

The tactic normalize_hyp just simplifies the given hypothesis with the given list of lemmas.
The try combinator ensures that the tactic is deemed successful even if no simplifications
are necessary. The tactic normalize_hyps gathers the local context, turns the list of
names into a list of expressions by applying the mk_const tactic to each one, and then
calls normalize_hyp on each element of the context with those lemmas. The for’ tactic,
like the for tactic, applies the second argument to each element of the first, but it returns
unit rather than accumulate the results in a list.

We can test the result:

example (p q r : Prop) (h1 : ¬ (p ↔ (q ∧ ¬ r))) (h2 : ¬ (p → (q → ¬ r))) : true :=
by do normalize_hyps,

trace_state,
triv

The result is as follows:

p q r : Prop,
h1 : p ∧ (r ∨ ¬q) ∨ q ∧ ¬p ∧ ¬r,
h2 : p ∧ q ∧ r
⊢ true

The next five tactics handle the task of splitting conjunctions.

open tactic expr

meta def add_fact (prf : expr) : tactic unit :=
do nh ← get_unused_name `h none,

p ← infer_type prf,
assertv nh p prf,
return ()
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meta def is_conj (e : expr) : tactic bool :=
do t ← infer_type e,

return (is_app_of t `and)

meta def add_conjuncts : expr → tactic unit | e :=
do e1 ← mk_app `and.left [e],

monad.cond (is_conj e1) (add_conjuncts e1) (add_fact e1),
e2 ← mk_app `and.right [e],
monad.cond (is_conj e2) (add_conjuncts e2) (add_fact e2)

meta def split_conjs_at (h : expr) : tactic unit :=
do monad.cond (is_conj h)

(add_conjuncts h >> clear h)
skip

meta def split_conjs : tactic unit :=
do l ← local_context,

monad.for' l split_conjs_at

The tactic add_fact prf takes a proof of a proposition p, and adds p the the local context
with a fresh name. Here, get_unused_name `h none generates a fresh name of the form
h_n, for a numeral n. The tactic is_conj infers the type of a given expression, and
determines whether or not it is a conjunction. The tactic add_conjuncts e assumes that
the type of e is a conjunction and adds proofs of the left and right conjuncts to the context,
recursively splitting them if they are conjuncts as well. The tactic split_conjs_at h tests
whether or not the hypothesis h is a conjunction, and, if so, adds all its conjuncts and then
clears it from the context. The last tactic, split_conjs, applies this to every element of
the context.

We need two more small tactics before we can write our propositional prover. The first
reduces the task of proving a statement p from some hypotheses to the task of proving
falsity from those hypotheses and the negation of p.

meta def deny_conclusion : tactic unit :=
do refine ```(classical.by_contradiction _),

nh ← get_unused_name `h none,
intro nh,
return ()

The refine tactic applies the expression in question to the goal, but leaves any remaining
metavariables for us to fill. The theorem classical.by_contradiction has type ∀ {p :
Prop}, (¬p → false) → p, so applying this theorem proves the goal but leaves us with
the new goal of proving ¬p → false from the same hypotheses, at which point, we can
use the introduction rule for implication. If we omit the return (), we will get an error
message, because deny_conclusion is supposed to have type tactic unit, but the intro
tactic returns an expression.

The next tactic finds a disjunction among the hypotheses, or returns the option.none
if there aren’t any.
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meta def find_disj : tactic (option expr) :=
do l ← local_context,

(first $ l.map
(λ h, do t ← infer_type h,

cond (is_app_of t `or)
(return (option.some h)) failed)) <|>

return none

Our propositional prover can now be implemented as follows:

meta def prop_prover_aux : N → tactic unit
| 0 := fail "prop prover max depth reached"
| (nat.succ n) :=

do split_conjs,
contradiction <|>
do (option.some h) ← find_disj |

fail "prop_prover failed: unprovable goal",
cases h,
prop_prover_aux n,
prop_prover_aux n

meta def prop_prover : tactic unit :=
do deny_conclusion,

normalize_hyps,
prop_prover_aux 30

The tactic prop_prover denies the conclusion, reduces the hypotheses to negation-normal
form, and calls prop_prover_aux with a maximum splitting depth of 30. The tactic
prop_prover_aux executes the following simple loop. First, it splits any conjunctions in
the hypotheses. Then it tries applying the contradiction tactic, which will find a pair
of contradictory literals, p and ¬ p, if there is one. If that does not succeed, it looks for
a disjunction h among the hypotheses. At this stage, if there aren’t any disjunctions, we
know that the goal is not propositionally valid. On the other hand, if there is a disjunction,
prop_prover_aux calls the cases tactic to split the disjunction, and then applies itself
recursively to each of the resulting subgoals, decreasing the splitting depth by one.

Notice the pattern matching in the do notation:

(option.some h) ← find_disj |
fail "prop_prover failed: unprovable goal"

This is shorthand for the use of the bind operation in the tactic monad to extract the
result of find_disj, together with the use of a match statement to extract the result. The
expression after the vertical bar is the value returned for any other case in the pattern
match; in this case, it is the value returned if find_disj returns none. This is a common
idiom when writing tactics, and so the compressed notation is handy.

All this is left for us to do is to try it out:
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section
variables a b c d : Prop

example (h1 : a ∧ b) (h2 : b ∧ ¬ c) : a ∨ c :=
by prop_prover

example (h1 : a ∧ b) (h2 : b ∧ ¬ c) : a ∧ ¬ c :=
by prop_prover

-- not valid
-- example (h1 : a ∧ b) (h2 : b ∧ ¬ c) : a ∧ c :=
-- by prop_prover

example : ((a → b) → a) → a :=
by prop_prover

example : (a → b) ∧ (b → c) → a → c :=
by prop_prover

example (α : Type) (x y z w : α) :
x = y ∧ (x = y → z = w) → z = w :=

by prop_prover

example : ¬ (a ↔ ¬ a) :=
by prop_prover

end
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The Tactic Library

[Document all the useful things available for writing tactics: the simplifier API, red black
trees, pattern matching, …]
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