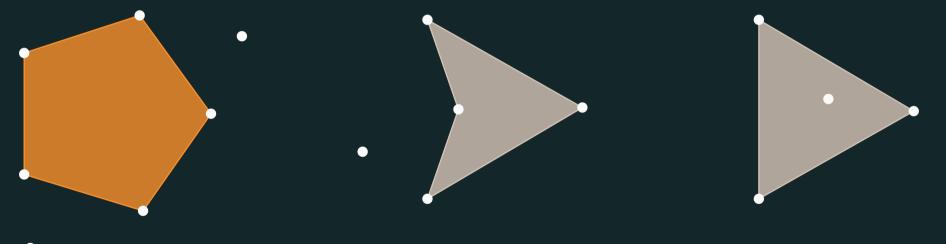
# Formal Verification of the Empty Hexagon Number

Bernardo Subercaseaux<sup>1</sup>, Wojciech Nawrocki<sup>1</sup>, James Gallicchio<sup>1</sup>, Cayden Codel<sup>1</sup>, <u>Mario Carneiro</u><sup>1</sup>, Marijn J. H. Heule<sup>1</sup>

*Interactive Theorem Proving* | September 9th, 2024 Tbilisi, Georgia

<sup>1</sup> Carnegie Mellon University, USA

Fix a set S of points on the plane, *no three collinear*. A *k*-hole is a convex *k*-gon with no point of S in its interior.



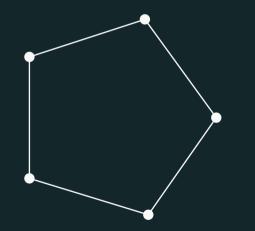
• 5-hole ✓ convex 5-gon ✓

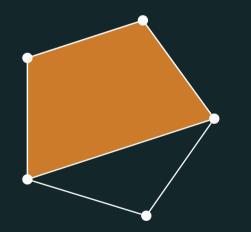
convex 4-gon **x** 

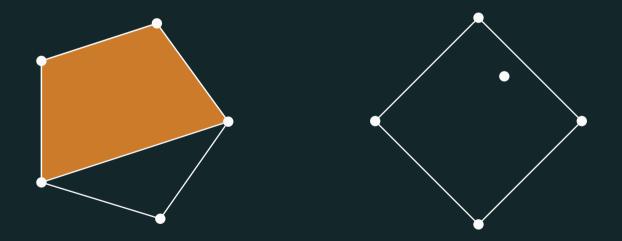
4-hole  $\boldsymbol{X}$ 

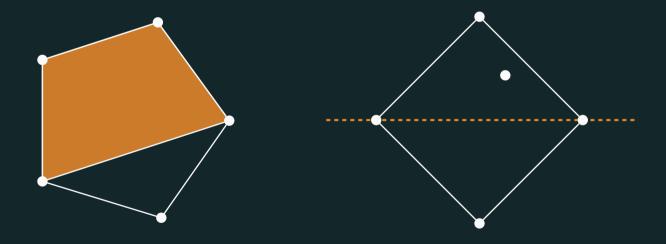
3-hole **×** convex 3-gon ✓

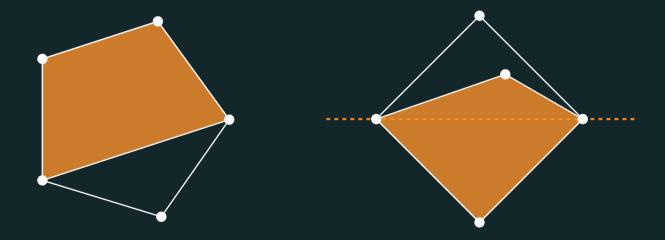
#### **Theorem** (Klein 1932). Every set of 5 points in the plane contains a 4-hole.

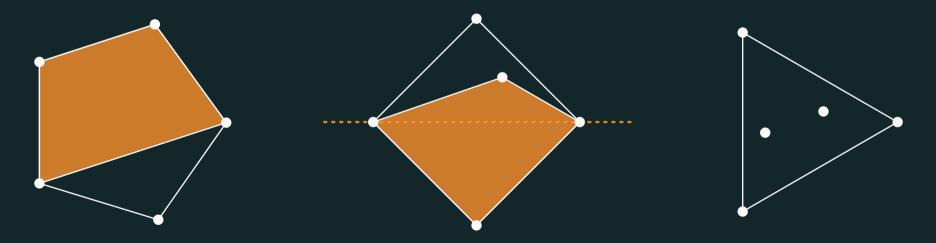


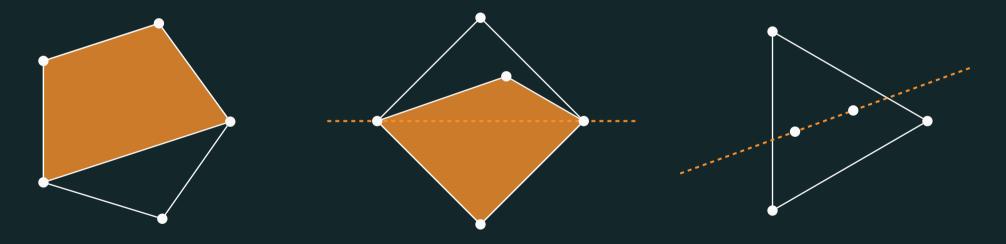


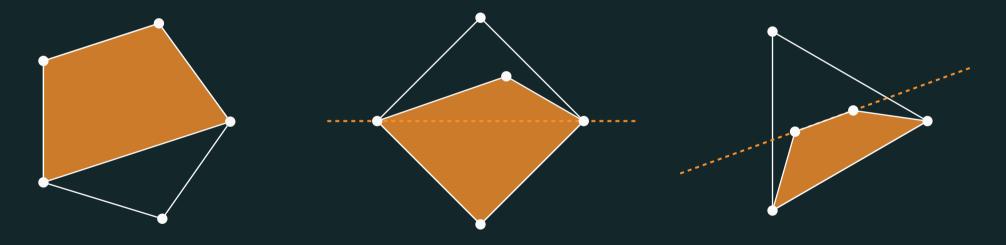






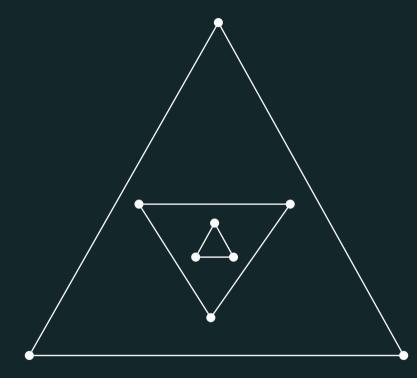


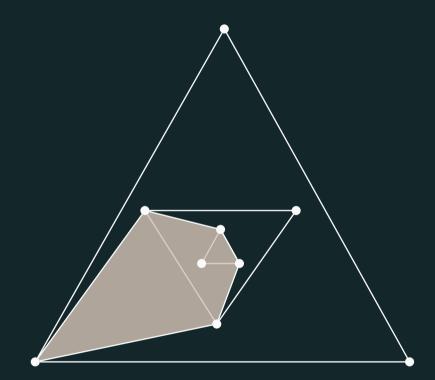




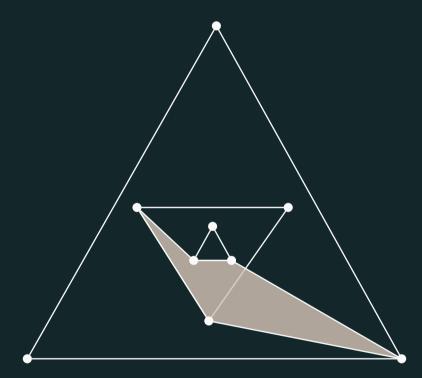
ulletulletulletigodotigodolulletulletightarrow

3 / 22





5-hole **x** convex 5-gon ✓



convex 5-gon **X** 

g(k) = least n s.t. any set of n points must contain a convex k-gon h(k) = least n s.t. any set of n points must contain a k-hole We just showed  $h(4) \le 5$  and 9 < h(5)

**Theorem** (Erdős and Szekeres 1935). For a fixed k, every *sufficiently large* set of points contains a convex k-gon. So all g(k) are finite.

#### g(k) = least n s.t. any set of n points must contain a **convex** k-gon

h(k) = least n s.t. any set of n points must contain a k-holeWe just showed  $h(4) \le 5$  and 9 < h(5)

**Theorem** (Erdős and Szekeres 1935). For a fixed k, every sufficiently large set of points contains a convex k-gon. So all g(k) are finite.

g(k) = least n s.t. any set of n points must contain a convex k-gon h(k) = least n s.t. any set of n points must contain a k-hole We just showed  $h(4) \le 5$  and 9 < h(5)

**Theorem** (Erdős and Szekeres 1935). For a fixed k, every *sufficiently large* set of points contains a convex k-gon. So all g(k) are finite.

#### g(k) = least n s.t. any set of n points must contain a **convex** k-gon

h(k) = least n s.t. any set of n points must contain a k-hole

We just showed  $h(4) \leq 5$  and 9 < h(5)

**Theorem** (Erdős and Szekeres 1935). For a fixed k, every *sufficiently large* set of points contains a convex k-gon. So all g(k) are finite.

g(k) = least n s.t. any set of n points must contain a convex k-gon h(k) = least n s.t. any set of n points must contain a k-hole We just showed  $h(4) \le 5$  and 9 < h(5)

**Theorem** (Erdős and Szekeres 1935). For a fixed k, every *sufficiently large* set of points contains a convex k-gon. So all g(k) are finite.

h(3) = 3 (trivial) h(4) = 5 (Klein 1932) h(5) = 10 (Harborth 1978) h(6) = 30 (Overmars 2003; Heule and Scheucher 2024)

$$g(3)=3$$
 (trivial)  
 $g(4)=5$  (Klein 1932)  
 $g(5)=9$  (Makai 1930s)  
 $g(6)=17$  (Szekeres and Peters 2006)

#### We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

- ▶ We focused on h(6), established this year.
- ▶ g(6) previously verified in Isabelle/HOL (Marić 2019).
- ▶ Efficient SAT encoding of Heule & Scheucher speeds up g(6) verification.

 $egin{aligned} h(3) &\leq 3 \ ( ext{trivial}) \ h(4) &\leq 5 \ ( ext{Klein 1932}) \ h(5) &\leq 10 \ ( ext{Harborth 1978}) \ h(6) &\leq 30 \ ( ext{Overmars 2003; Heule and Scheucher 2024}) \end{aligned}$ 

 $egin{aligned} g(3) &\leq 3 ext{ (trivial)} \ g(4) &\leq 5 ext{ (Klein 1932)} \ g(5) &\leq 9 ext{ (Makai 1930s)} \ g(6) &\leq 17 ext{ (Szekeres and Peters 2006)} \end{aligned}$ 

#### We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

- ▶ We focused on h(6), established this year.
- ▶ g(6) previously verified in Isabelle/HOL (Marić 2019).
- ▶ Efficient SAT encoding of Heule & Scheucher speeds up g(6) verification.

 $egin{aligned} h(3) &\leq 3 \ ext{(trivial)} \ h(4) &\leq 5 \ ext{(Klein 1932)} \ h(5) &\leq 10 \ ext{(Harborth 1978)} \ h(6) &\leq 30 \ ext{(Overmars 2003; Heule and Scheucher 2024)} \end{aligned}$ 

 $egin{aligned} g(3) &\leq 3 ext{ (trivial)} \ g(4) &\leq 5 ext{ (Klein 1932)} \ g(5) &\leq 9 ext{ (Makai 1930s)} \ g(6) &\leq 17 ext{ (Szekeres and Peters 2006)} \end{aligned}$ 

#### We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

- ▶ We focused on h(6), established this year.
- ▶ g(6) previously verified in Isabelle/HOL (Marić 2019).
- Efficient SAT encoding of Heule & Scheucher speeds up g(6) verification.

 $egin{aligned} h(3) &\leq 3 \ ( ext{trivial}) \ h(4) &\leq 5 \ ( ext{Klein 1932}) \ h(5) &\leq 10 \ ( ext{Harborth 1978}) \ h(6) &\leq 30 \ ( ext{Overmars 2003; Heule and Scheucher 2024}) \end{aligned}$ 

 $egin{aligned} g(3) &\leq 3 ext{ (trivial)} \ g(4) &\leq 5 ext{ (Klein 1932)} \ g(5) &\leq 9 ext{ (Makai 1930s)} \ g(6) &\leq 17 ext{ (Szekeres and Peters 2006)} \end{aligned}$ 

#### We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

- We focused on h(6), established this year.
- ▶ g(6) previously verified in Isabelle/HOL (Marić 2019).
- ▶ Efficient SAT encoding of Heule & Scheucher speeds up g(6) verification.

2 < h(3) (trivial) 4 < h(4) (Klein 1932) 9 < h(5) (Harborth 1978) 29 < h(6) (Overmars 2003; Heule and Scheucher 2024) 2 < g(3) (trivial) 4 < g(4) (Klein 1932) 8 < g(5) (Makai 1930s) 16 < g(6) (Szekeres and Peters 2006)

#### We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

- ▶ We focused on h(6), established this year.
- ▶ g(6) previously verified in Isabelle/HOL (Marić 2019).
- ▶ Efficient SAT encoding of Heule & Scheucher speeds up g(6) verification.

h(3) = 3 (trivial) g(3) =h(4) = 5 (Klein 1932) g(4) =h(5) = 10 (Harborth 1978) g(5) =h(6) = 30 (Overmars 2003; Heule and Scheucher 2024) g(6) =

$$g(3)=3$$
 (trivial)  
 $g(4)=5$  (Klein 1932)  
 $g(5)=9$  (Makai 1930s)  
 $g(6)=17$  (Szekeres and Peters 2006)

We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

- ▶ We focused on h(6), established this year.
- ▶ g(6) previously verified in Isabelle/HOL (Marić 2019).
- ▶ Efficient SAT encoding of Heule & Scheucher speeds up g(6) verification.

- **Reduction.** Show that a mathematical theorem is true if a propositional formula  $\varphi$  is unsatisfiable.
- **Solving.** Show that  $\varphi$  is indeed unsatisfiable using a SAT solver.
- Solving is reliable, reproducible, and trustworthy: formal proof systems (DRAT) and verified proof checkers (cake\_lpr).
- ▶ But reduction is problem-specific, and involves complex transformations: *focus of our work*.

**Reduction.** Show that a mathematical theorem is true if a propositional formula  $\varphi$  is unsatisfiable.

**Solving.** Show that  $\varphi$  is indeed unsatisfiable using a SAT solver.

Solving is reliable, reproducible, and trustworthy: formal proof systems (DRAT) and verified proof checkers (cake\_lpr).

▶ But reduction is problem-specific, and involves complex transformations: *focus of our work*.

# **Reduction.** Show that a mathematical theorem is true if a propositional formula $\varphi$ is unsatisfiable.

**Solving.** Show that  $\varphi$  is indeed unsatisfiable using a SAT solver.

Solving is reliable, reproducible, and trustworthy: formal proof systems (DRAT) and verified proof checkers (cake\_lpr).

► But reduction is problem-specific, and involves complex transformations: *focus of our work*.

**Reduction.** Show that a mathematical theorem is true if a propositional formula  $\varphi$  is unsatisfiable.

**Solving.** Show that  $\varphi$  is indeed unsatisfiable using a SAT solver.

Solving is reliable, reproducible, and trustworthy: formal proof systems (DRAT) and verified proof checkers (cake\_lpr).

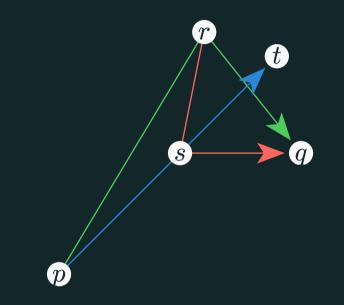
► But reduction is problem-specific, and involves complex transformations: *focus of our work*.

## Reduction from geometry to SAT

- 1. Discretize from continuous coordinates in  $\mathbb{R}^2$  to boolean variables.
- 2. Points can be put in *canonical form* without removing *k*-holes.
  - theorem symmetry\_breaking {l : List Point} :
    - $3 \leq 1.$ length  $\rightarrow$  PointsInGenPos l  $\rightarrow$
    - ∃ w : CanonicalPoints, l ≼σ w.points
- 3. *n* points in canonical form with no 6-holes induce a propositional assignment that satisfies  $\varphi_n$ .
- 4. But  $\varphi_{30}$  is unsatisfiable.

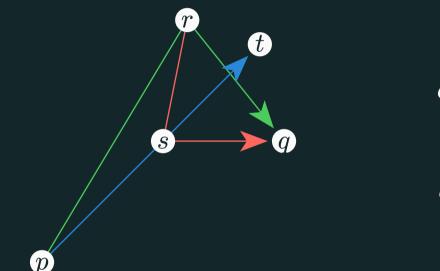
axiom unsat\_6hole\_cnf : (Geo.hexagonCNF 30).isUnsat

## Discretization with triple-orientations



 $egin{aligned} &\sigma(p,r,q) = 1 & ( ext{clockwise}) \ &\sigma(p,s,t) = 0 & ( ext{collinear}) \ &\sigma(r,s,q) = -1 & ( ext{counter-clockwise}) \end{aligned}$ 

## Discretization with triple-orientations



$$egin{aligned} &\sigma(p,r,q) = 1 & ( ext{clockwise}) \ &\sigma(p,s,t) = 0 & ( ext{collinear}) \ &\sigma(r,s,q) = -1 & ( ext{counter-clockwise}) \end{aligned}$$

 $\exists k$ -hole  $\Leftrightarrow$  a propositional formula over  $\sigma(a, b, c)$  is satisfiable

# Reduction from geometry to SAT

#### 1. Discretize from continuous coordinates in $\mathbb{R}^2$ to boolean variables.

2. Points can be put in *canonical form* without removing *k*-holes.

theorem symmetry\_breaking {l : List Point} :
 3 ≤ l.length → PointsInGenPos l →
 ∃ w : CanonicalPoints, l ≤σ w.points

- 3. *n* points in canonical form with no 6-holes induce a propositional assignment that satisfies  $\varphi_n$ .
- 4. But  $\varphi_{30}$  is unsatisfiable.

axiom unsat\_6hole\_cnf : (Geo.hexagonCNF 30).isUnsat

# Symmetry breaking

**Lemma**. WLOG we can assume that the points  $(p_1, ..., p_n)$  are in *canonical form*, meaning that they satisfy the following properties:

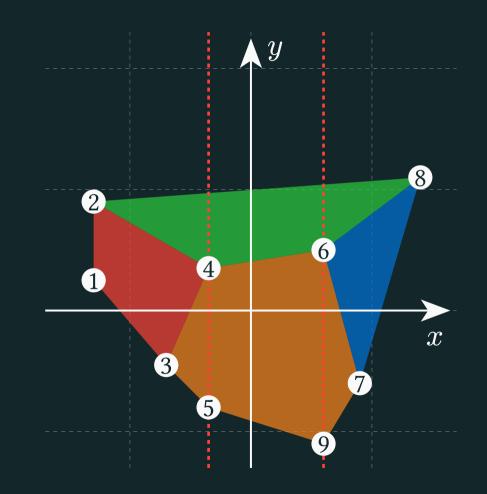
► (*x*-order) The points are sorted with respect to their *x*-coordinates, i.e.,  $(p_i)_x < (p_j)_x$  for all  $1 \le i < j \le n$ .

▶ (CCW-order) All orientations  $\sigma(p_1, p_i, p_j)$ , with  $1 < i < j \le n$ , are counterclockwise.

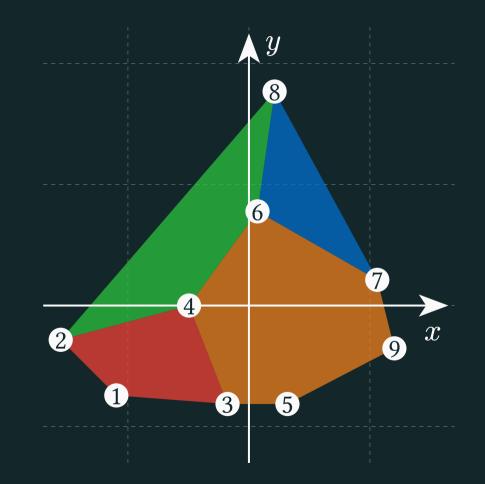
► (Lex order) The first half of list of adj. orientations is lex-below the second half:

$$\begin{bmatrix} \sigma \Big( p_{\lceil \frac{n}{2} \rceil + 1}, p_{\lceil \frac{n}{2} \rceil + 2}, p_{\lceil \frac{n}{2} \rceil + 3} \Big), \dots, \sigma (p_{n-2}, p_{n-1}, p_n) \end{bmatrix} \succcurlyeq \\ \begin{bmatrix} \sigma \Big( p_{\lceil \frac{n}{2} \rceil - 1}, p_{\lceil \frac{n}{2} \rceil}, p_{\lceil \frac{n}{2} \rceil + 1} \Big), \dots, \sigma (p_2, p_3, p_4) \end{bmatrix}$$

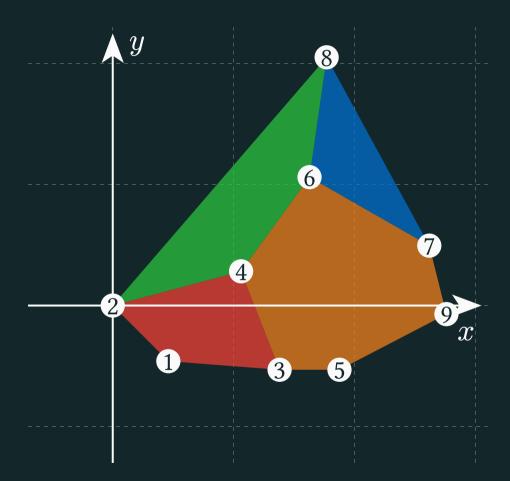
#### Starting set of points.



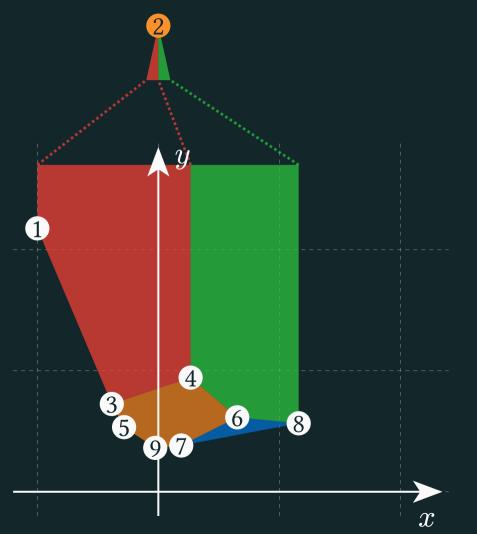
#### Rotation ensures distinct x.

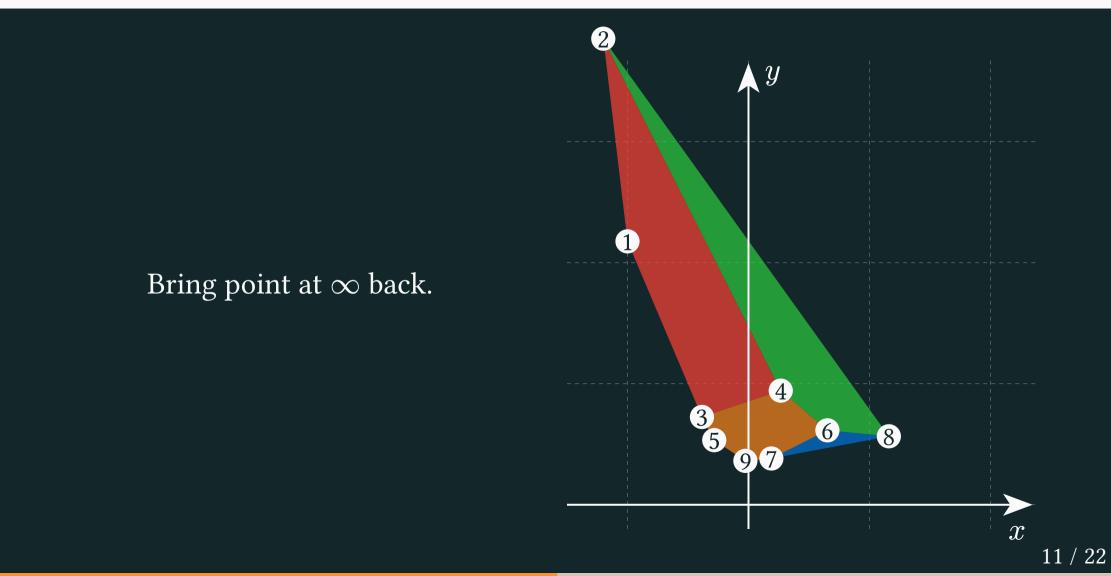


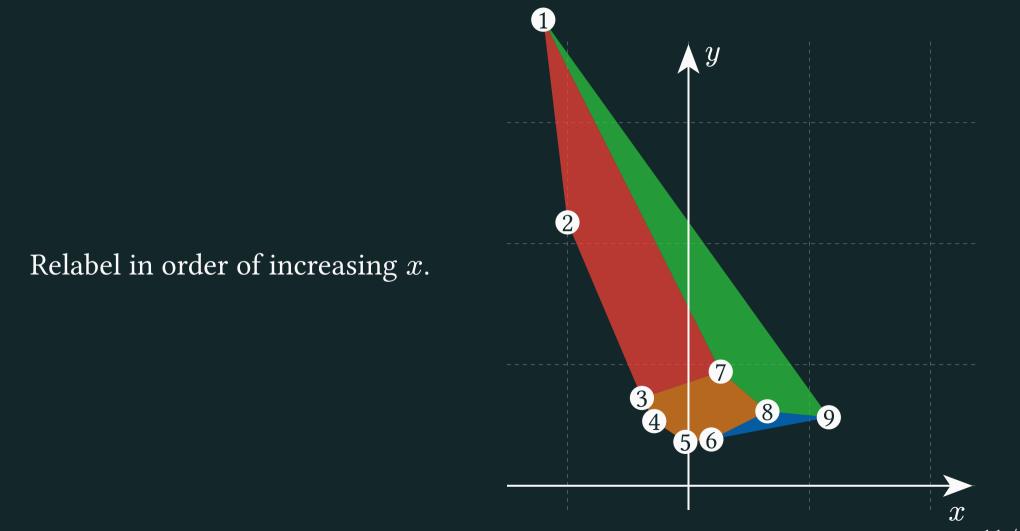
Translate leftmost point to (0, 0). Ensures nonnegative x.



# Map $(x, y) \mapsto \left(\frac{y}{x}, \frac{1}{x}\right)$ .







## Reduction from geometry to SAT

- 1. Discretize from continuous coordinates in  $\mathbb{R}^2$  to boolean variables.
- 2. Points can be put in *canonical form* without removing *k*-holes.
  - theorem symmetry\_breaking {l : List Point} :
     3 ≤ l.length → PointsInGenPos l →
     ∃ w : CanonicalPoints, l ≤σ w.points
- 3. *n* points in canonical form with no 6-holes induce a propositional assignment that satisfies  $\varphi_n$ .
- theorem satisfies\_hexagonEncoding {w : CanonicalPoints} :  $\neg \sigma$ HasEmptyKGon 6 w  $\rightarrow$  w.toPropAssn  $\models$  Geo.hexagonCNF w.len 4. But  $\varphi_{30}$  is unsatisfiable.

axiom unsat\_6hole\_cnf : (Geo.hexagonCNF 30).isUnsat

To verify  $h(6) \leq 30$ :

CNF formula produced directly from executable Lean definition.
To verify *h*(6) ≤ 30:
► CNF with 65 092 variables and 436 523 clauses

To verify  $h(6) \leq 30$ :

- ► CNF with 65 092 variables and 436 523 clauses
- partitioned into 312 418 subproblems

- To verify  $h(6) \leq 30$ :
- ► CNF with 65 092 variables and 436 523 clauses
- ▶ partitioned into 312 418 subproblems
- ▶ each subproblem solved by CaDiCaL 1.9.5

- To verify  $h(6) \leq 30$ :
- ► CNF with 65 092 variables and 436 523 clauses
- ▶ partitioned into 312 418 subproblems
- ▶ each subproblem solved by CaDiCaL 1.9.5
- unsatisfiability proofs checked on-the-fly by cake\_lpr

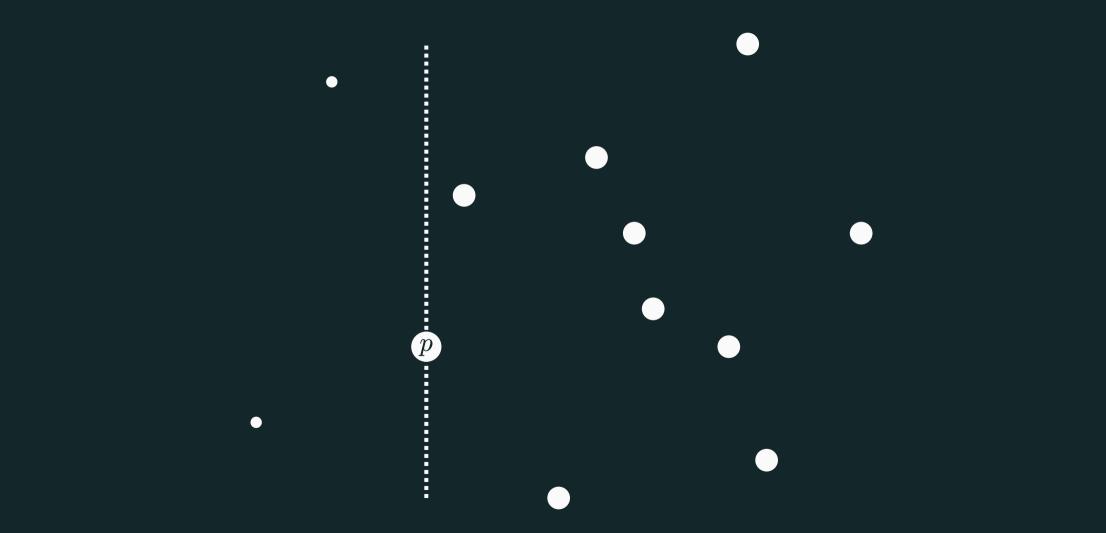
- To verify  $h(6) \leq 30$ :
- ▶ CNF with 65 092 variables and 436 523 clauses
- ▶ partitioned into 312 418 subproblems
- ▶ each subproblem solved by CaDiCaL 1.9.5
- unsatisfiability proofs checked on-the-fly by cake\_lpr
- ► 25 876.5 CPU hours on Bridges 2 cluster of Pittsburgh Supercomputing Center

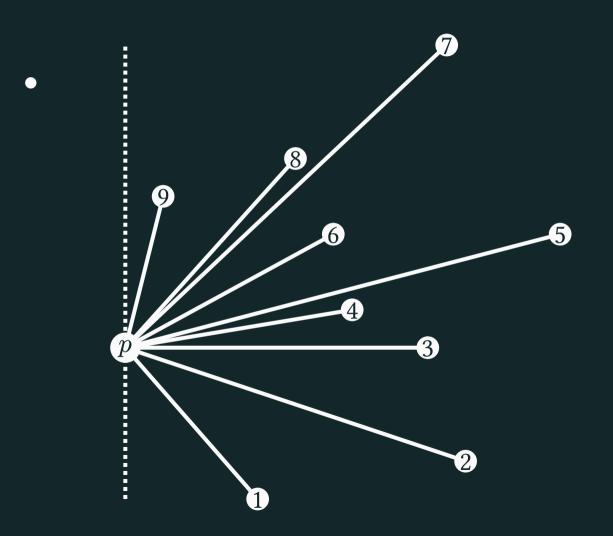
#### Lower bounds

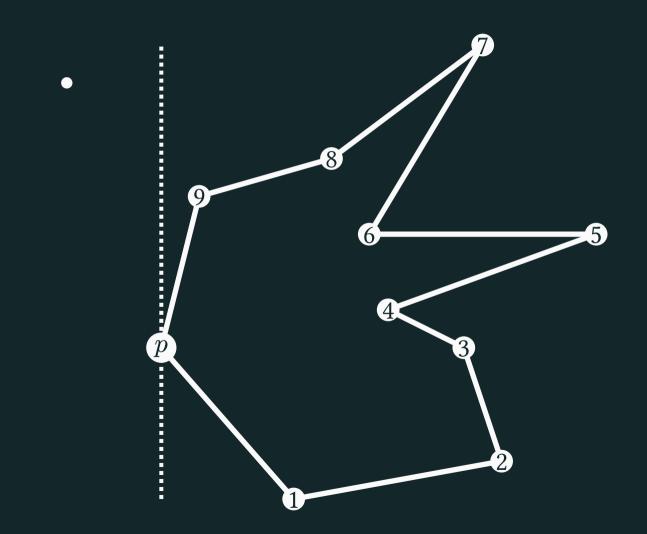
#### To prove n < h(k), find a set of n points with no k-holes.

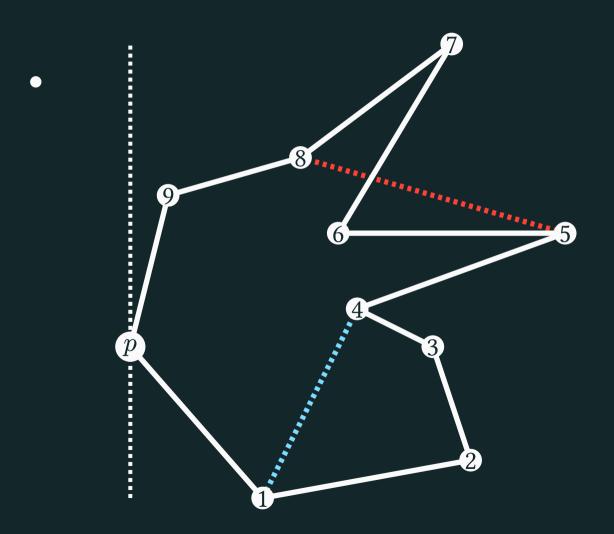
To prove n < h(k), find a set of n points with no k-holes. Naive checker algorithm is  $\mathcal{O}(n^{k+1} \log k)$  time. To prove n < h(k), find a set of n points with no k-holes. Naive checker algorithm is  $O(n^{k+1} \log k)$  time. We verified an  $O(n^3)$  solution from Dobkin, Edelsbrunner, and Overmars (1990).

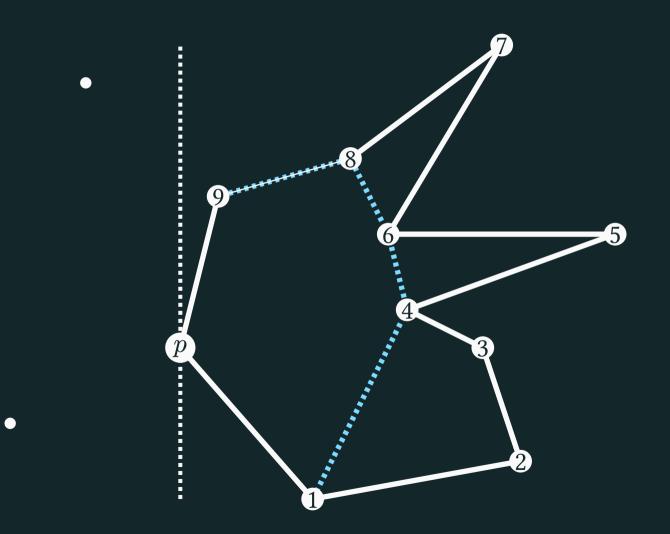


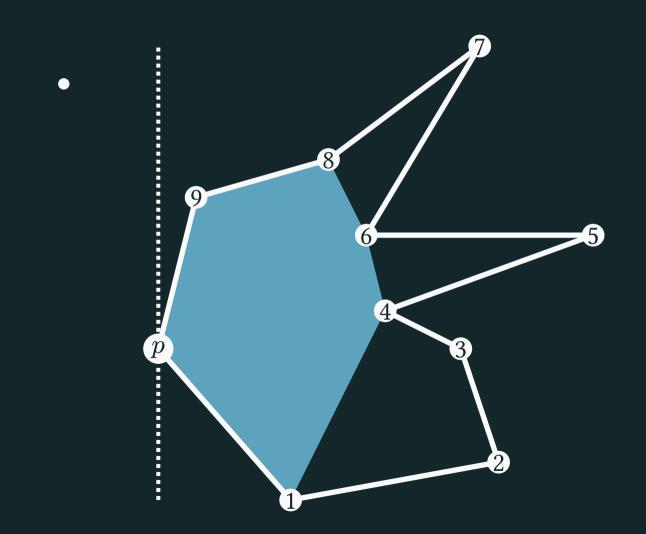












#### Hole-finding algorithm: verification

If 
$$j = i + 1 \overline{ij}$$
 clearly is in  $VG$ .

## Hole-finding algorithm: verification

If 
$$j = i + 1 \overline{ij}$$
 clearly is in  $VG$ .

expands to

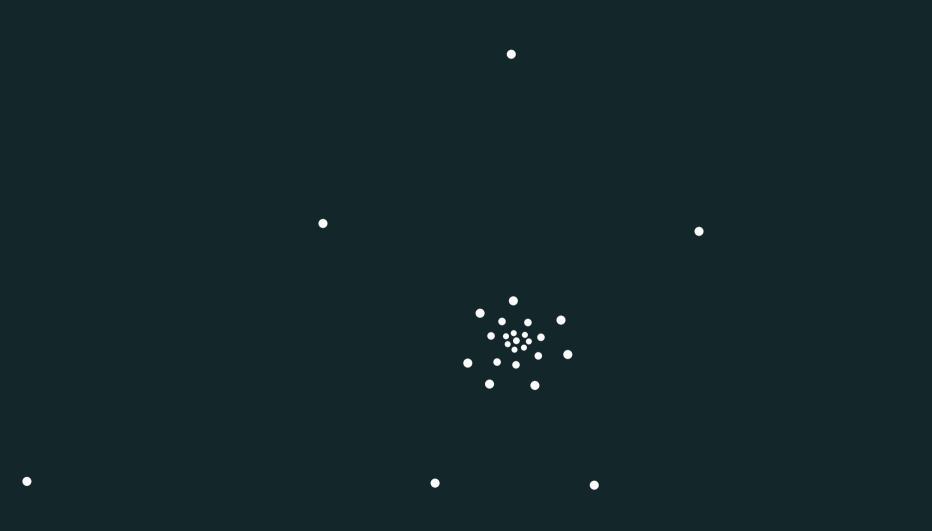
## Hole-finding algorithm: verification

If 
$$j = i + 1 \overline{ij}$$
 clearly is in  $VG$ .

#### expands to

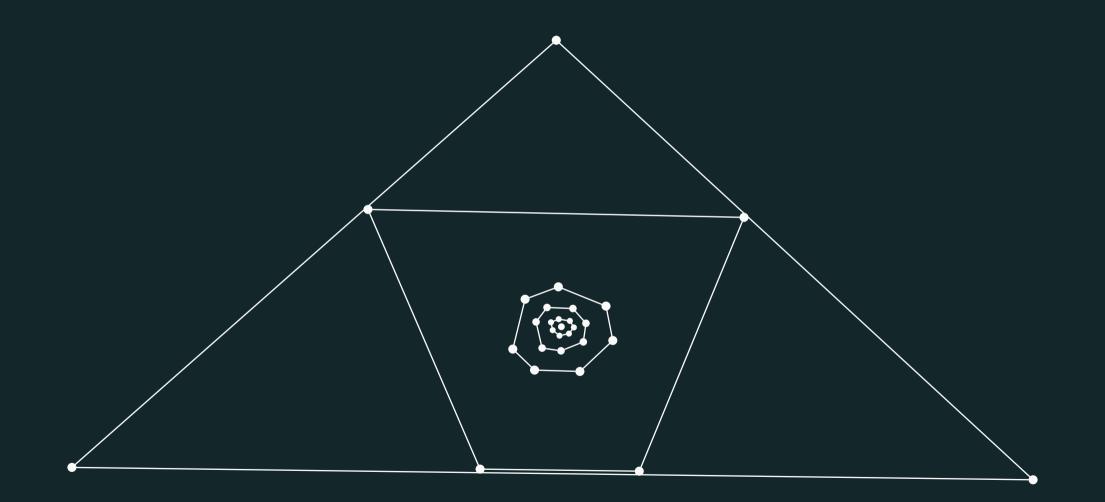
theorem of\_proceed\_loop {i j : Fin n} (ij : Visible p pts i j) {0 : Queues n j} {0 j : BelowList n j} {0\_i} (ha) {IH} (hIH :  $\forall$  a (ha : a < i), Visible p pts a j  $\rightarrow$  ProceedIH p pts (ha.trans ij.1) (IH a ha)) (Hj : Queues.OrderedTail p pts lo j (fun k h => Q.q[k.1]'(Q.sz  $\rightarrow$  h)) Q\_j.1) (ord : Queues.Ordered p pts lo i (fun k h => Q.q[k.1]'(Q.sz  $\rightarrow$  h.trans ij.1)) Q\_i) (g\_wf : Q.graph.WF (VisibleLT p pts lo j)) {0' Q\_j'} (eq : proceed.loop pts i j ij.1 IH 0 Q\_j 0\_i ha = (0', Q\_j')) :  $\exists$  a Q1 Q\_i1 Q\_j1, proceed.finish i j ij.1 Q1 Q\_i1 Q\_j1 = (0', Q\_j')  $\land$ Q1.graph.WF (VisibleLT p pts i j)  $\land$ ( $\forall$  k  $\in$  Q\_i1.1,  $\sigma$  (pts k) (pts i) (pts j)  $\neq$  .ccw)  $\land$ lo  $\leq$  a  $\land$  Queues.Ordered p pts a i (fun k h => Q.q[k.1]'(Q.sz  $\rightarrow$  h.trans ij.1)) Q\_i1.1  $\land$ ( $\forall$  (k : Fin n) (h : k < j),  $\neg$ (lo  $\leq$  k  $\land$  k < a)  $\rightarrow$  Q1.q[k.1]'(Q1.sz  $\rightarrow$  h) = Q.q[k.1]'(Q.sz  $\rightarrow$  h))  $\land$ Queues.OrderedTail p pts a j (fun k h => Q1.q[k.1]'(Q1.sz  $\rightarrow$  h) Q\_j1.1 := by

#### Lower bound: 29 points with no 6-holes (Overmars 2003)



igodol

#### Lower bound: 29 points with no 6-holes (Overmars 2003)



axiom unsat\_6hole\_cnf : (Geo.hexagonCNF 30).isUnsat

```
theorem holeNumber 6 : holeNumber 6 = 30 :=
  le antisymm
   (hole 6 theorem' unsat 6hole cnf)
   (hole lower bound [
    (1, 1260), (16, 743), (22, 531), (37, 0), (306, 592),
    (310, 531), (366, 552), (371, 487), (374, 525), (392, 575),
    (396, 613), (410, 539), (416, 550), (426, 526), (434, 552),
    (436, 535), (446, 565), (449, 518), (450, 498), (453, 542),
    (458, 526), (489, 537), (492, 502), (496, 579), (516, 467),
    (552, 502), (754, 697), (777, 194), (1259, 320)])
```

Upper and lower bounds for all finite *hole numbers* h(k) followed with additional effort.

Upper and lower bounds for all finite *hole numbers* h(k) followed with additional effort.

Open problems remain:

▶ Horton's construction of  $h(k) = \infty$  for  $7 \le k$  hasn't been verified.

Upper and lower bounds for all finite *hole numbers* h(k) followed with additional effort.

Open problems remain:

- ▶ Horton's construction of  $h(k) = \infty$  for  $7 \le k$  hasn't been verified.
- ▶ Exact values of  $g(k) < \infty$  for  $7 \le k$  aren't known.

Upper and lower bounds for all finite *hole numbers* h(k) followed with additional effort.

Open problems remain:

- ▶ Horton's construction of  $h(k) = \infty$  for  $7 \le k$  hasn't been verified.
- ▶ Exact values of  $g(k) < \infty$  for  $7 \le k$  aren't known.
- ► Trust story for large SAT proofs could be improved.

# Bibliography

Dobkin, David P., Herbert Edelsbrunner, and Mark H. Overmars. 1990. "Searching for Empty Convex Polygons". *Algorithmica* 5 (4): 561–71. https:// doi.org/10.1007/BF01840404

Erdős, Paul, and György Szekeres. 1935. "A Combinatorial Problem in Geometry". *Compositio Mathematica* 2: 463–70. http://eudml.org/doc/88611

Harborth, Heiko. 1978. "Konvexe Fünfecke in ebenen Punktmengen.". *Elemente Der Mathematik* 33: 116–18. http://eudml.org/doc/141217

Heule, Marijn J. H., and Manfred Scheucher. 2024. "Happy Ending: An Empty Hexagon in Every Set of 30 Points". In Tools and Algorithms for the Construction and Analysis of Systems - 30th International Conference, TACAS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part I, edited by Bernd Finkbeiner and Laura Kovács, 14570:61– 80. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/ 978-3-031-57246-3\_5

Horton, J. D. 1983. "Sets with No Empty Convex 7-Gons". *Canadian Mathematical Bulletin* 26 (4): 482–84. https://doi.org/10.4153/CMB-1983-077-8

Marić, Filip. 2019. "Fast Formal Proof of the Erdős-Szekeres Conjecture for Convex Polygons with at Most 6 Points". *J. Autom. Reason.* 62 (3): 301–29. https://doi.org/10.1007/S10817-017-9423-7 Overmars, Mark H. 2003. "Finding Sets of Points Without Empty Convex 6-Gons". *Discret. Comput. Geom.* 29 (1): 153–58. https://doi.org/10.1007/S 00454-002-2829-X

Szekeres, George, and Lindsay Peters. 2006. "Computer Solution to the 17-Point Erdős-Szekeres Problem". *The ANZIAM Journal* 48 (2): 151–64. https://doi. org/10.1017/S144618110000300X