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I bet, with my net,
I can get those things yet.

Dr. Seuss.

(Note written 29/4/14)

1 Introduction

I was motivated to learn something about topological vector spaces, and in particular I wanted to
understand what it meant to say that a topological vector space was complete. In this generality
one wants to ask more than all Cauchy sequences converging, because one does not know that the
topology is given by a metric. The correct generalisation of a sequence in this context is a net,
so here are some basic things about nets. All of this is taken from “Real analysis” by G. Folland.
In particular, I am just giving definitions and proving or stating basic results from this book
throughout. I should perhaps remark that I discovered after writing this that for first countable
topological vector spaces (see definition below—but note that Fréchet spaces are metrisable and
hence first countable), completeness really is just asking that all Cauchy sequences converge (see
Chapter 5, Exercise 44 of Folland), so a lot of this nonsense below is not necessary in many cases.
It’s still pretty neat though, and in particular after over 15 years I finally understand why Ray
Lickorish only proved that compactness was equivalent to sequential compactness for metric spaces
in Part IB.

2 Why nets?

Recall that if X is a topological space, and x1, x2, . . . is a sequence of elements of X, then we say
that (xi)i → x for x ∈ X if, for all neighbourhoods A of x, there is N ≥ 0 such that xi ∈ A for
all i ≥ N . Looks like a nice idea. But there is a problem with this notion of convergence in the
generality of topological spaces, that you don’t see for metric spaces. The problem is this. If X is
a topological space, and A is a subset, then the closure A of A in X may be strictly bigger than
the set of limits (in X) of sequences all of whose elements are in A. If x is not in A then certainly
it’s not a limit of a sequence all of whose terms are in A. But if X is sufficiently “big” then there
could be elements in A which are also not limits of sequences in A. More precisely, we say that
a topological space X is first countable if every point has a countable neighbourhood base, that
is, for all x ∈ X there is a countable set Ui of open neighbourhoods of x with the property that
every open subset of X containing x also contains one of the Ui. Metric spaces are first countable
(balls of rational radius), and sequences are a good idea in metric spaces. On the other hand, for
spaces that are not first countable, the two “natural” notions of closure above may not coincide,
as we shall now see (this example is on p125 of Folland).

The set CR of (not necessarily continuous) functions from R to C is a product of copies of
C, and if one gives it the product topology, then one checks easily that for functions (fn)n≥0 and
f , we have fn → f iff fn(x) → f(x) for all x (so convergence in the product is just pointwise
convergence—see Proposition 4.12 of Folland, or reconstruct the argument yourself). Now consider
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the subset A of continuous functions R→ C. Recall that a function R→ C is Borel measurable if
the pre-image of a Borel set is Borel (note that this is stronger than Lebesgue measurability), and
continuous functions are Borel measurable, and a pointwise limit of Borel measurable functions
is Borel measurable (Folland Corollary 2.9), so the set of limits of sequences of elements of A are
contained within the Borel measurable functions. On the other hand, A is dense in CR because
if f : R → C and U is an open set in CR containing f then, after shrinking U if necessary,
there exists ε > 0 and x1, x2, . . . , xn ∈ R such that U is the functions g : R → C such that
|g(xi)− f(xi)| < ε for all i, and visibly there will be a continuous function with this property.

So how does one recover the closure of a set A in a topological space X as a set of “limits”?
The answer is to use nets.

3 Nets

Definitions: a directed set is a set S equipped with a binary relation ≤ satisfying s ≤ s for all
s ∈ S, s ≤ t ≤ u implies s ≤ u, and for any s, t ∈ S there is u ∈ S with s ≤ u and t ≤ u. Examples
are the natural numbers with the usual ≤, and the neighbourhoods of a point x in a topological
space X, with U ≤ V iff V ⊆ U (reverse inclusion). A net in a topological space X is a map
S → X with S a directed set. Notation: s ∈ S is sent to xs ∈ X. If (xs)s∈S is a net and E ⊆ X
is a subset, we say that the net is eventually in E if there exists s0 ∈ S such that xs ∈ E for all
s ≥ s0 (This implies, but I suspect is stronger than, demanding that for all s ∈ S there is t ≥ s
with xt ∈ E), and we say that x ∈ X is a limit of (xs)s∈S , or (xs) converges to x, or just xs → x,
if for every neighbourhood U of x, (xs) is eventually in U .

The result is that if E ⊆ X then x ∈ E iff there is a net in E that converges to x. This
is Proposition 4.18 of Folland. Here’s a proof: it’s clear that if x is not in the closure then it’s
certainly not a limit, so every limit is in the closure. Conversely, if x is in the closure, then let S
be the neighbourhoods of x ordered by reverse inclusion, and for s ∈ S define xs to be an element
of E∩s. The claim is that this net converges to x and this is clear because if U is a neighbourhood
of x then we set s0 = U and for s ≥ s0 we have xs ∈ s ⊆ U .

Remark: if f : X → Y is a map of topological spaces, then f is continuous at x ∈ iff for every
net (xs) converging to x, f(xs) converges to f(x). This is Proposition 4.19 of Folland, I’ll omit
the proof though.

Recall from my 2nd year analysis notes that a metric space is compact iff it’s sequentially
compact (that is, if every sequence has a convergent subsequence). The correct generalisation is
that a topological space is compact iff every net has a cluster point iff every net has a convergent
subnet, but I will not define these terms: see p126 of Folland.
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