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Abstract.

H
u
m
a
n

For the pure ψ-class intersection numbers ⟨τe1 · · · τen⟩g on the moduli space Mg,n of stable
curves, we determine

::
for which choices of e1, . . . , en their value becomes extremal. The

intersection number is minimal for powers of a single ψ-class (i.e. all ei but one vanish),
whereas maximal values are obtained for balanced vectors (|ei − ej | ≤ 1 for all i, j). The
proof uses the nefness of the ψ-classes combined with Khovanskii–Teissier log-concavity.

Author’s note.

H
u
m
a
n The question of finding extremal values of the ψ-intersection numbers first occurred to the

author when looking for a toy problem to explore using the software OpenEvolve [Sha25].
The conjecture that balanced exponents lead to the maximal values is a natural guess,
and was indeed discovered quickly by the tested model. To the author’s knowledge, this
optimization-style problem was novel and not covered by existing literature: it is a simple
and natural question, but somewhat

:::::::::
orthogonal to the questions usually studied in enu-

merative geometry. After some experimental verification and presenting the conjecture to
several colleagues (who confirmed its open status), it was submitted as a problem to the
IMProofBench project [SBD+25]. This project collects research level mathematics questions
and tests them against a range of AI models. As part of this evaluation, the conjecture was
independently proven by several such models, without human intervention (see Appendix A
for further details).
The proof itself turns out to be unexpectedly simple, bypassing the rich structural results
on descendant invariants on Mg,n, and instead using just a few basic properties of ψ-classes
(nefness and symmetry) together with general results on intersection numbers of divisor
classes. As such, while the obtained theorem is a neat little result and original contribution
to the literature, it would arguably be on the borderline of notability for a mathematical
publication.
We still opted to use this opportunity and write the present note, both to present the result
but in particular also to document the process that went into its discovery and subsequent
write-up. Apart from showcasing the current level of sophistication of AI for these tasks,
we also propose some best practices for attribution of AI use in mathematical writing (see
Appendix B). We apply these principles in the current paper, e.g. by marking human-
generated text with a blue bar or

:::::::::
underlines, whereas AI-generated text is marked in brown.

After an initial draft of the paper was completed, we also added an alternative version of
the proof of the main theorem (Section 3), partially verified in Lean [MU21]. The argument
is split into a purely combinatorial optimization theorem, formalized by Claude Code and
GPT 5.2 with minimal guidance by the author, and a geometric proposition proving the
applicability of the optimization result to the intersection numbers above.

Date: December 15, 2025.
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1. Introduction

A
I

Let g, n ∈ Z≥0 with 2g− 2+n > 0. The moduli space Mg,n of stable curves of genus g with
n marked points has dimension d = 3g − 3 + n. For each marked point i, the cotangent line
bundle Li at that marking defines the ψ-class ψi = c1(Li) ∈ H2(Mg,n,Q). The descendant
integrals (or intersection numbers of ψ-classes)

⟨τe1 · · · τen⟩g :=
∫
Mg,n

ψe1
1 · · ·ψen

n

are rational numbers that vanish unless
∑n

i=1 ei = d. These integrals play a central role
in the Witten–Kontsevich theorem [Wit91, Kon92], which establishes that their generating
function is a τ -function for the KdV hierarchy.
Given g and n, let

E(g, n) =

{
e = (e1, . . . , en) ∈ Zn

≥0 :
n∑

j=1

ej = 3g − 3 + n

}
be the set of valid exponent vectors. Define the function D : E(g, n) → Q by D(e) =
⟨τe1 · · · τen⟩g.

Definition 1.1. A vector e ∈ E(g, n) is balanced if |ei − ej| ≤ 1 for all 1 ≤ i, j ≤ n.

Equivalently, writing 3g−3+n = an+b with 0 ≤ b < n via Euclidean division, the balanced
vectors are precisely the permutations of (a, . . . , a, a + 1, . . . , a + 1) with a appearing n− b
times and a+ 1 appearing b times.

Theorem 1.2 (Extremal descendants). Let g ∈ Z≥0 ::::
and

:::::::::
n ∈ Z>0 with 2g − 2 + n > 0.

(a) (Minimum) The function D achieves its minimum at the concentrated vector (3g −
3 + n, 0, . . . , 0) (or any permutation thereof), with value

⟨τ3g−3+n·τn−1
0

:::::
⟩g =

1

24g g!
. (1)

(b) (Maximum) The function D achieves its maximum on a balanced vector e ∈ E(g, n).

The
::::::::
formula

::::
for

::::
the

:::::::::
minimal

:::::::
value in part (a) is well-known (

:::
see

::::
e.g.

:::::::::::
equation

:::::::
(5.36)

:::
in

::::::
[IZ92]); it also follows from the generating function identity

1 +
∑
g≥1

tg
∫
Mg,1

ψ3g−2
1 = exp(t/24) (2)

established in [FP00]. Part (b) appears to be new.
In genus zero, part (b) follows immediately from the closed formula

⟨τe1 · · · τen⟩0 =
(n− 3)!

e1! · · · en!
, (3)

valid when
∑
ei = n − 3. The multinomial coefficient on the right is maximized precisely

when the ei are as equal as possible. For higher genus, no such closed formula exists, and
the result requires the more sophisticated argument given in Section 2.

Remark 1.3. The
:::::
result

:::::::
above

:::::
was

:::::
also verified computationally for all 0 ≤ g ≤ 11 and

1 ≤ n ≤ 11 using the SageMath [The24] software package admcycles [DSvZ21].
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Remark 1.4. Uniqueness need not hold: due to symmetry, all permutations of a balanced
vector achieve the same value, and in some cases plateaus may occur where strict inequality
fails.

H
u
m
a
n

Given the simple formula (1) for the minimal descendant, a natural question is:

Question 1.5. For 3g−3+n = an+b, does there exist a simple description (closed formula,
generating function, recursion, . . .) for the balanced descendant invariant

⟨τn−b
a τ ba+1⟩g = max

e∈E(g,n)
:::::

D(e) ? (4)

A particularly simple regime might be the case n ≥ 3g − 3, where a = 1 and the dilaton
equation allows to reduce all invariants to

⟨τn−(3g−3)
1 τ 3g−3

2 ⟩g =
(2g − 3 + n)!

(5g − 6)!
⟨τ 3g−3

2 ⟩g . (5)

A
I

Questions of extremizing enumerative invariants within a finite parameter space are some-
what unusual in enumerative geometry, where one more typically studies generating functions
or asymptotic behavior. It would be interesting to investigate analogous extremal questions
for other families of intersection numbers, such as Hodge integrals or double Hurwitz num-
bers.

H
u
m
a
n

Outline. In Section 2 we present the proof of Theorem 1.2, as it was found and stated
by GPT-5 (for part (b)) and Gemini 3 Pro (for part (a)). We chose to leave the formula-
tion largely untouched to allow the reader to see (for better or worse) the current level of
proficiency in proof generation exhibited by these models.
Conversely, section 3 presents an alternative argument for Theorem 1.2, which can be read
independently of Section 2. The treatment there splits the proof into:

• a purely combinatorial optimization result (Theorem 3.1) which has been formalized
in Lean [MU21] based on the mathlib library [mC20],

• a geometric argument (Proposition 3.2), with proof entirely human-written, proving
that the descendant function D from Theorem 1.2 satisfies the assumptions of this
optimization result.

In Appendix A we describe the various forms of AI assistance that went into the preparation
of the present article. In Appendix B we collect some proposals and tools for attributing AI
contributions in mathematical papers.

Acknowledgments. We want to thank Javier Gómez-Serrano and Jaume De Dios Pont
for inspiring and organizing, respectively, the OpenEvolve hackathon at which the present
project was initiated. We are grateful to our colleagues who gave comments on Theorem 1.2,
in particular for confirming that to their knowledge it is not already covered in the literature.
The proposals in Appendix B were inspired by both a public discussion thread started by
Terry Tao and conversations with colleagues, such as Jasper Dekoninck, Jeremy Feusi, Tim
Gehrunger as well as the members of the writing group of the Leiden declaration on the use
of AI in mathematical research, in particular Jarod Alper, Michael Harris, David Holmes,
Ursula Martin and Jim Portegies, whom we thank warmly!
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Finally, we are grateful to Jarod Alper, Honglu Fan, Jeremy Feusi, David Holmes and Jim
Portegies for comments on various drafts of the present article.
The author was supported by SwissMAP and the IMProofBench project received financial
support from Google/DeepMind as part of their Google Gift program.

2. Proof of the main theorem

A
I

We write d = dimMg,n = 3g − 3 + n throughout.

2.1.
::::::::::
Maximal

::::::::::::::::
descendants. The following proof was generated by OpenAI’s GPT-5

model. It is reproduced with only minimal formatting changes; see Appendix A for con-
text.

:::::
Note: The original AI output contained an error in the genus-0 formula stated in the

remarks, giving (n − 3)!/
∏

i(2ei − 1)!! instead of the correct formula (3). This has been
corrected.

Proof of Theorem 1.2 (b). We prove that among all e with fixed sum, D(e) attains its max-
imum at a balanced vector, i.e., when the entries differ by at most 1.

Step 1 (Two-point slice and its basic properties). Fix distinct indices i ̸= j and set

M :=
∏
k ̸=i,j

ψek
k , q := ei + ej.

For t = 0, 1, . . . , q, consider the one-variable sequence

St :=

∫
Mg,n

ψt
i ψ

q−t
j M.

By the natural action of the symmetric group permuting the markings on Mg,n, the classes
ψi and ψj are exchanged by an automorphism that leaves M invariant; hence

St = Sq−t (palindromicity).

Step 2 (Khovanskii–Teissier log-concavity). It is standard that each ψi is nef on Mg,n.
For nef classes A,B and fixed nef classes H3, . . . , Hd on a projective (orbifold) variety of
dimension d, the Khovanskii–Teissier inequalities

::
as

:::::::::::
described

:::
in

:::::::::
Variant

::::::
1.6.2

:::
of

::::::::
[Laz04]

(equivalently, the mixed Hodge–Riemann bilinear relations) give the discrete log-concavity(∫
AtBq−tH3 · · ·Hd

)2

≥
(∫

At−1Bq−t+1H3 · · ·Hd

)(∫
At+1Bq−t−1H3 · · ·Hd

)
for all 1 ≤ t ≤ q − 1. Applying this with A = ψi, B = ψj, H3 · · ·Hd =M , we obtain

S2
t ≥ St−1St+1 (1 ≤ t ≤ q − 1) (log-concavity).

Step 3 (Monotonicity towards the middle). For a positive log-concave sequence, the ratios
Rt := St+1/St are weakly decreasing in t. Using palindromicity,

Rq−t−1 =
Sq−t

Sq−t−1

=
St

St+1

=
1

Rt

.

Hence for t ≤ ⌊q/2⌋ − 1 we have Rt ≥ Rq−t−1 = 1/Rt, so Rt ≥ 1, i.e.,

St+1 ≥ St for t <
q

2
, St−1 ≥ St for t >

q

2
.

4



In words: along the two-point slice {(t, q − t) : 0 ≤ t ≤ q}, the values increase up to the
middle and then decrease.

Step 4 (The balancing step). Suppose ei ≥ ej + 2. Then ei > q/2. By the monotonicity
just proved,

D(e1, . . . , ei, . . . , ej, . . . , en) = Sei ≤ Sei−1 = D(e1, . . . , ei − 1, . . . , ej + 1, . . . , en).

Thus, whenever two entries differ by at least 2, transferring one unit from the larger to the
smaller weakly increases the value of the integral.

Step 5 (Conclusion by iteration). Starting from any e ∈ E(g, n), repeatedly apply the
balancing step to any pair (i, j) with |ei − ej| ≥ 2. This process terminates at a balanced
vector e∗ (all entries differ by at most 1), and along the way the value of D never decreases.
Hence

D(e) ≤ D(e∗) for some balanced e∗ ∈ E(g, n).

In particular, the maximum of D on E(g, n) is achieved at a balanced vector. □

Remark 2.1. The log-concavity in Step 2 is a special case of the Khovanskii–Teissier (or
Alexandrov–Fenchel) inequalities for nef classes; it can be proved by restricting to a gen-
eral complete intersection surface and applying the Hodge index theorem, or via the mixed
Hodge–Riemann bilinear relations. The reduction from the Deligne–Mumford stack to a
smooth projective variety can be made using a finite level-structure cover; intersection num-
bers scale by the degree of the cover, so inequalities are preserved.

2.2.
::::::::::
Minimal

::::::::::::::::
descendants. The minimum claim follows from the observation that

::::::::::
iteratively concentrating exponents on a single marking yields

:
a
::::::::::::::::
non-increasing

::::::::::
sequence

::
of

::::::::::::
descendant

:::::::::
integrals, combined with the known formula for one-point integrals.

Proof. We employ the logic of Part (b) in reverse. Let e = (e1, . . . , en) ∈ E(g, n) be an
arbitrary exponent vector. We wish to show that D(e) is bounded below by the value of the
concentrated vector.
Let k be an index such that ek = max1≤i≤n ei. If e is not fully concentrated on the k-th
marking, there exists an index j ̸= k such that ej > 0. Consider the pair of indices (k, j)
and let q = ek + ej. Since ek is maximal in e, we have ek ≥ ej, which implies ek ≥ q/2.
Recall from Step 3 of the proof of part (b) that the sequence St (representing the integral as
a function of the exponent at the k-th marking) is non-increasing for t ≥ q/2. Consequently,
shifting the entire weight from the j-th marking to the k-th marking does not increase the
value of the invariant:

D(. . . , ek, . . . , ej, . . .) ≥ D(. . . , ek + ej, . . . , 0, . . .).

By iteratively applying this procedure for all j ̸= k with ej > 0, we transform e into the
concentrated vector

emin = (0, . . . , 0, d, 0, . . . , 0),
:::::::::::::::::::::

(where the weight d = 3g−3+n is at index k) while ensuring the value of the integral never
increases. Thus D(e) ≥ D(emin).
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It remains to calculate the value of this minimum. The integral is given by ⟨τdτn−1
0 ⟩g, where

τ0 denotes the fundamental class. We apply the string equation

⟨τ0
m∏
i=1

τai⟩g =
m∑
j=1

⟨τaj−1

∏
i̸=j

τai⟩g

repeatedly to remove the n − 1 insertions of τ0. :::::
This

::::::
works

::::
for

:::::::
g ≥ 1;

::::
for

:::::::
g = 0

::::
we

:::::
only

:::::::
remove

:::::::
n− 3

:::::
such

:::::::::::
insertions,

:::
to

:::::::
avoid

:::::::
falling

:::::
into

::::
the

:::::::::
unstable

:::::::
range

:::::::
n ≤ 2. In each step,

the term on the right-hand side vanishes unless we act on the single non-zero exponent (since
τ−1 is zero). We therefore obtain the reduction

⟨τ3g−3+nτ
n−1
0 ⟩g = ⟨τ3g−4+nτ

n−2
0 ⟩g = · · · = ⟨τ3g−2⟩g.

The value of the one-point integral ⟨τ3g−2⟩g = 1/(24gg!) is a classical result following from
the Witten–Kontsevich theorem (specifically, the coefficient of tg in the partition function
restricted to one marked point).

::::
See

:::
in

:::::::::::
particular

::::
the

::::::::::::
discussion

:::::
and

:::::::::::
references

::::::::
around

:::::::::
equation

::::
(2). □

3. Formalized proof via an abstract optimization theorem

A
I

This section presents an alternative approach to proving Theorem 1.2, based on a Lean 4
formalization available at the project blueprint. The key insight is to separate the abstract
optimization argument—which applies to any function satisfying certain axioms—from the
geometric input specific to ψ-class intersection numbers. This modular structure clarifies the
logical dependencies and yields a fully machine-verified proof of the combinatorial core.
Throughout this section, we work with weak compositions : for integers n ≥ 1 and d ≥ 0,
define

E(n, d) =

{
e = (e1, . . . , en) ∈ Zn

≥0 :
n∑

j=1

ej = d

}
.

For e ∈ E(n, d) and distinct indices i, j, we write e − δi + δj for the vector obtained by
decreasing ei by 1 and increasing ej by 1 (defined when ei ≥ 1).

Theorem 3.1 (Optimization Theorem - ��, LEAN). Let D : E(n, d) → Q be a function
satisfying:

(S) Symmetry: D(e ◦ σ) = D(e) for all permutations σ ∈ Sn.
(LC) Log-concavity: For all e ∈ E(n, d) and distinct i, j with ei, ej ≥ 1,

D(e)2 ≥ D(e− δi + δj) ·D(e+ δi − δj).

(P) Strict positivity: D(e) > 0 for all e ∈ E(n, d).

Then:

(a) D achieves its maximum on a balanced vector (where |ei − ej| ≤ 1 for all i, j).
(b) D achieves its minimum on a concentrated vector (where e = d · δk for some k).

The proof
:
is

:::::::::::
presented

::
in

::::::::::
Sections

:::
3.1

:::
to

::::
3.4.

:::::::::::
Assuming

::::
the

:::::::::
theorem

::::
for

:::::
now,

:
we verify that

the descendant integral satisfies the hypotheses
::::::
above.

Proposition 3.2. Let g, n ∈ Z≥0 with 2g − 2 + n > 0 and n ≥ 1. The function

D : E(n, 3g − 3 + n) → Q, D(e) =

∫
Mg,n

ψe1
1 · · ·ψen

n
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satisfies conditions (S), (LC), and (P) of Theorem 3.1.

H
u
m
a
n

Proof. For the symmetry (S), we observe that for any σ ∈ Sn with inverse τ = σ−1 there
exists a natural isomorphism

ϕσ : Mg,n → Mg,n, (C, p1, . . . , pn) 7→ (C, pσ(1), . . . , pσ(n)) , (6)

which satisfies ϕ∗
σψi = ψτ(i). Using the projection formula together with the pushforward

relation (ϕσ)∗[Mg,n] = [Mg,n] of the fundamental class, we obtain:

D(e ◦ σ) =
∫
Mg,n

ψ
eσ(1)

1 · · ·ψeσ(n)
n =

∫
Mg,n

ψe1
τ(1) · · ·ψ

en
τ(n)

= deg
(
ψe1
τ(1) · · ·ψ

en
τ(n) ⌢ [Mg,n]

)
= deg

(
(ϕσ)

∗(ψe1
1 · · ·ψen

n )⌢ (ϕσ)∗[Mg,n]
)

= deg
(
(ϕσ)∗(ψ

e1
1 · · ·ψen

n ⌢ [Mg,n])
)

=

∫
Mg,n

ψe1
1 · · ·ψen

n = D(e) .

To prove property (LC) we first recall from Variant 1.6.2 of [Laz04] that for X an irreducible
complete scheme of dimension d ≥ 2 and nef divisor classes

α1, α2, β1, . . . , βd−2 ∈ N1(X)R

we have
(α1 · α2 · β1 · · · βd−2)

2 ≥
(
α2
1 · β1 · · · βd−2

)
·
(
α2
2 · β1 · · · βd−2

)
. (7)

Now fix d = 3g− 3+ n and e ∈ E(n, d) and distinct i, j with ei, ej ≥ 1, and choose α̃1 = ψj,

α̃2 = ψi and β̃1, . . . , β̃d−2 ∈ {ψ1, . . . , ψn} such that

ψe1
1 · · ·ψen

n = α̃1 · α̃2 · β̃1 · · · β̃d−2 .

Note that this step is just a reordering of factors, using that ei, ej ≥ 1 to isolate the two
factors α̃1 and α̃2. Let φ : X → Mg,n be a finite flat cover of degree M by an irreducible

complete scheme X (see e.g. [ACV03, Theorem 7.4.2]). Write αi = φ∗α̃i and βi = φ∗β̃i.
Since all ψ-classes are nef ([ACG11, Chapter XIV, Corollary 5.14]) and this property is
preserved under pullback by φ, we can apply (7) together with the projection formula and
obtain:

D(e)2 =

(∫
Mg,n

α̃1 · α̃2 · β̃1 · · · β̃d−2

)2

=
1

M2

(∫
X

α1 · α2 · β1 · · · βd−2

)2

≥
(

1

M

∫
X

α2
1 · β1 · · · βd−2

)
·
(

1

M

∫
X

α2
2 · β1 · · · βd−2

)
=

(∫
Mg,n

α̃2
1 · β̃1 · · · β̃d−2

)
·

(∫
Mg,n

α̃2
2 · β̃1 · · · β̃d−2

)
= D(e− δi + δj) ·D(e+ δi − δj).
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Finally, the positivity of all descendant invariants D(e) is well known, following e.g. from
the recursive formulas for computing these invariants derived from the Witten–Kontsevich
theorem [Wit91, Kon92]. □

A
I

Remark 3.3. Theorem 1.2(a) and (b) follow immediately from Theorem 3.1 and Propo-
sition 3.2. The formula (1) for the minimal value is then obtained by the string equation
argument given in Section 2.

3.1. Slice sequences. The proof of Theorem 3.1 proceeds by analyzing how D varies along
“slices” where only two coordinates change.

Definition 3.4 (Slice sequence - LEAN). Let D : E(n, d) → Q>0 satisfy (S), (LC), (P).
Given e ∈ E(n, d) and distinct indices i ̸= j, define the slice sequence S : {0, 1, . . . , q} → Q>0

by
St = D(e(t)),

where q = ei + ej and e(t) is the composition agreeing with e at all indices k /∈ {i, j}, with
e
(t)
i = t and e

(t)
j = q − t.

The key observation is that S inherits strong structural properties from D.

Lemma 3.5 (Palindromicity - ��, LEAN). The slice sequence satisfies St = Sq−t for all
0 ≤ t ≤ q.

Proof. The transposition σ = (i j) ∈ Sn exchanges the i-th and j-th coordinates. Since
e(t) ◦ σ = e(q−t), symmetry (S) gives St = D(e(t)) = D(e(q−t)) = Sq−t. □

Lemma 3.6 (Log-concavity - ��, LEAN). The slice sequence satisfies S2
t ≥ St−1 · St+1 for

all 1 ≤ t ≤ q − 1.

Proof. For 1 ≤ t ≤ q−1, the composition e(t) has e
(t)
i = t ≥ 1 and e

(t)
j = q− t ≥ 1. Applying

condition (LC) to e(t) with indices i, j yields

D(e(t))2 ≥ D(e(t) − δi + δj) ·D(e(t) + δi − δj) = D(e(t−1)) ·D(e(t+1)),

which is exactly S2
t ≥ St−1 · St+1. □

3.2. Unimodality of log-concave palindromic sequences. The following general lemma
is the heart of the argument.

Lemma 3.7 (Unimodality - ��, LEAN). Let S : {0, 1, . . . , q} → Q>0 be a positive sequence
satisfying:

• Palindromicity: St = Sq−t for all 0 ≤ t ≤ q.
• Log-concavity: S2

t ≥ St−1 · St+1 for all 1 ≤ t ≤ q − 1.

Then S is unimodal with maximum at the center:

(i) St ≤ St+1 whenever 2t < q.
(ii) St ≤ St−1 whenever 2t > q.

Proof. Define the ratio Rt = St+1/St for 0 ≤ t ≤ q− 1. Log-concavity implies that the ratios
are weakly decreasing: from S2

t ≥ St−1St+1 we obtain St/St−1 ≥ St+1/St, i.e., Rt−1 ≥ Rt.
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Palindromicity gives a reflection identity for ratios:

Rq−1−t =
Sq−t

Sq−1−t

=
St

St+1

=
1

Rt

.

For t with 2t < q− 1, monotonicity of ratios gives Rt ≥ Rq−1−t = 1/Rt, hence R
2
t ≥ 1. Since

Rt > 0, we conclude Rt ≥ 1, i.e., St+1 ≥ St. This proves (i).
Part (ii) follows from (i) by palindromicity: if 2t > q, then 2(q − t) < q, so Sq−t ≤ Sq−t+1,
which by palindromicity becomes St ≤ St−1. □

3.3. The balancing step.

Lemma 3.8 (Balancing increasesD - ��, LEAN). Let D satisfy (S), (LC), (P). If e ∈ E(n, d)
has ei ≥ ej + 2 for some i ̸= j, then

D(e) ≤ D(e− δi + δj).

Proof. Consider the slice sequence S for e with indices i, j. The original composition e
corresponds to Sei , and the modified composition e− δi + δj corresponds to Sei−1.
Since ei ≥ ej + 2, we have ei > (ei + ej)/2 = q/2, so 2ei > q. By the unimodality lemma
(part (ii)), Sei ≤ Sei−1, which gives D(e) ≤ D(e− δi + δj). □

Proof of Theorem 3.1(a). Starting from any e ∈ E(n, d), repeatedly apply the balancing
step: whenever there exist i, j with ei ≥ ej +2, replace e by e− δi+ δj. By Lemma 3.8, each
step weakly increases D.
This process terminates in finitely many steps because the imbalance

∑
k e

2
k strictly decreases

with each modification (one verifies (a−1)2+(b+1)2 < a2+b2 when a ≥ b+2). The process
terminates precisely when no pair (i, j) satisfies |ei − ej| ≥ 2, i.e., when e is balanced.
Thus every e can be transformed to a balanced e∗ with D(e) ≤ D(e∗). In particular, the
maximum of D over the finite set E(n, d) is achieved at a balanced vector. □

3.4. The concentrating step.

Lemma 3.9 (Concentrating decreases D - ��, LEAN). Let D satisfy (S), (LC), (P). If
e ∈ E(n, d) has ej ≥ 1 and ej ≤ ei for some i ̸= j, then

D(e− δj + δi) ≤ D(e).

Proof. Consider the slice sequence S for e with indices j, i (note the order). The original
composition corresponds to Sej , and the modified composition e − δj + δi corresponds to
Sej−1.
Since ej ≤ ei, we have 2ej ≤ ej + ei = q. If 2ej < q, then by unimodality (part (i)),
Sej−1 ≤ Sej , giving the result. If 2ej = q, then ej = ei and palindromicity gives Sej−1 =
Sq−(ej−1) = Sej+1; unimodality then gives Sej−1 = Sej+1 ≤ Sej . □

Proof of Theorem 3.1(b). Starting from any e ∈ E(n, d), repeatedly apply the concentrating
step: let i be an index achieving the maximum maxk ek, and if there exists j ̸= i with ej ≥ 1,
replace e by e− δj + δi. By Lemma 3.9, each step weakly decreases D.
This process terminates because the maximum entry maxk ek strictly increases with each
step (and is bounded by d). The process terminates when all mass is concentrated at a
single index, i.e., when e = d · δk for some k.
Thus every e can be transformed to a concentrated e∗ with D(e∗) ≤ D(e). In particular,
the minimum of D is achieved at a concentrated vector. □
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This completes the proof of Theorem 3.1.

Appendix A. Methodology: AI-assisted discovery and proof

A
I

This appendix documents the role of AI systems in discovering the conjecture and producing
the proof of Theorem 1.2(b).

A.1. Discovery of the conjecture. The initial observation arose during a hackathon on
AI-assisted mathematics organized by Jaume de Dios Pont at ETH Zürich, focused on
OpenEvolve

:::::::
[Sha25]

:::
—

:::
an

:::::::::::::
open-source

:::::::::::::::::
implementation

::
of

::::
the

::::::::::::::
AlphaEvolve

:::::::
system

:::::::::::
[NVE+25]

:::
for

:::::::::::::
evolutionary

::::::::
search

:::::
over

:::::::::::
functions.

:::::::::
Inspired

::::
by

:::::::
recent

:::::::::::::
applications

:::
of

:::::
such

:::::::::
systems

::::
for

::::::::::::::
mathematical

::::::::::::
exploration

::::::::::::::
[GGSTW25], the author chose as a test problem the optimization

of descendant integrals on Mg,n for fixed g and n.
While setting up the project using Claude Code (running Anthropic’s Claude Opus 4.5), the
AI assistant observed from initial computations:

“The interesting pattern is that for g = 0, spreading the exponents seems to
give larger values (e.g., [1, 1, 1, 0, 0, 0] = 6 vs. [3, 0, 0, 0, 0, 0] = 1).”

In the configuration file for OpenEvolve, the model included:

Mathematical insight for genus 0:

- The integral equals (n-3)! / (e 1! * e 2! * ... * e n!)

- This is maximized when the exponents are as evenly distributed as

possible

- For example, with n=6 and dim=3, [1,1,1,0,0,0] gives 6, while

[3,0,0,0,0,0] gives 1

For higher genus:

- The formula is more complex (Witten-Kontsevich theorem)

- General pattern: spreading exponents tends to give larger values

- But the optimal distribution may differ from genus 0

The evolutionary search then quickly converged to balanced vectors as optima.

A.2. Submission to IMProofBench. Based on these observations, the author formu-
lated the conjecture (for the maximum; the minimum was added later) and submitted it to
IMProofBench [SBD+25], a benchmark for evaluating AI systems on research-level mathe-
matical proof generation.
The problem was evaluated against several large language models in an agentic framework
with access to SageMath and other computational tools. Results varied significantly:

• Several models produced inconclusive responses: proofs for genus 0 only, or vague
suggestions for higher genus.

• Some models claimed false counterexamples.
• At least one model cited a reference that appears to be entirely hallucinated:

“Zhou, Y. (2018). A proof of the concavity conjecture for intersection num-
bers of ψ-classes. Journal of Differential Geometry, 110(2), 361–389.”

:::::
This

:::::::
paper

:::::
does

:::::
not

::::::
exist;

:::::
the

:::::::
above

::::::::
volume

:::
of

::::::
JDG

:::::::::
instead

:::::::::
features

::::
the

:::::::
paper

:::::::
[Son18]

::::
on

::::::
pages

::::::::::
345–377,

::::::
being

::::
the

:::::
last

::::::
paper

:::
in

:::::
this

::::::
issue.

• Some models used the provided SageMath tools to verify the conjecture computa-
tionally for small values of g and n.
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• Multiple evaluations of
:::
the

::::
AI

::::::::
models

::::
o3,

::::::::
GPT-5

:::::
and

:::::::::
GPT-5

::::
Pro converged on

the proof strategy using nefness and Khovanskii–Teissier log-concavity presented in
Section 2.

The proof in Section 2 is taken from one of the GPT-5 evaluations. Interestingly, the single
evaluation of the problem against GPT-5.1 did not solve the problem.

A.3. Partial formalization and Lean Blueprint.

H
u
m
a
n

Based on discussions with colleagues and inspired by a proposal of Emily Riehl, we also
decided to formalize at least parts of the proof found by GPT-5, as presented in Section
3. To our knowledge, the prerequisite results in algebraic geometry going into the proof
(divisors on algebraic schemes, intersection numbers, nef classes, moduli spaces of curves,
the Witten–Kontsevich theorem, etc) are not yet formalized in Lean. Thus we decided to
split the proof in a purely combinatorial optimization result (Theorem 3.1), and a geometric
part proved non-formally (Theorem 3.2).
As for the work of formalization itself: the author has not had any prior experience with
Lean or the mathlib. For all manipulations of

:::
the respective .lean file we used Claude

Code (Opus 4.5) which loaded the Lean 4 Skills collection developed by Cameron Freer. For
particularly tricky problems or intermediate planning we also copy-pasted summaries of the
current formalization state by Claude together with the latest version of the Lean file into
ChatGPT 5.2, pasting its answer back to Claude Code.
Progress was slow, but steady, and after several hours of work the Lean file compiled without
errors or missing proofs. During this time, the contribution of the author was confined to:

• providing an initial description of the result to be formalized, with existing AI-
generated proof for context,

• giving very few pointers on possible mathematical issues,
• occasionally soliciting updates, general management of the order of work, and inter-
ventions via GPT 5.2 commentary when progress stagnated.

In particular, we did not edit a single line of .lean code. A transcript of the conversation
can be found here.
After the formalization was complete, the Lean code was made available via a GitHub
repository using the Lean blueprint plugin developed by Patrick Massot and collaborators.
Again, with exceptions of a few clicks on the GitHub website and debugging information
provided by the author, all files were created and edited by Claude Code.
The resulting annotated file balanced-vectors-blueprint.lean was then converted back
to the human-readable proofs in Section 3 by Claude Opus 4.5.
The whole process described above took about a day to complete.

A.4. Paper preparation.

A
I

This paper was prepared with assistance from Claude (Anthropic), which helped structure
the document, identify issues in the AI-generated proof (including the incorrect genus-0
formula in the original remarks), and draft portions of this methodology section.

H
u
m
a
n

Below we collect some links to shared example conversations with AI models, which include
the prompts used to get the relevant outputs:

• Paper drafting session (Claude Opus 4.5)
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• Summary of the IMProofBench project and literature overview created to provide
context for the paper drafting (Claude Opus 4.5 + Research Mode)

• Reference for (2) (Gemini 3 Pro), Reference for finite cover of Mg,n by scheme (Chat-
GPT 5.2)

• Proof of Theorem 1.2(a) (Gemini 3 Pro)
• Writing code to verify equation (5) in examples (Claude Opus 4.5)
• Writing the LaTeX proofs of Section 3 based on the existing Lean Blueprint file
(Claude Opus 4.5)

• Examples of Lean assistance provided by ChatGPT 5.2 (Conversation 1, Conversation
2, Conversation 3, Conversation 4)

• Creating LaTeX environments for labelling human and AI paragraphs : Version 1,
Version 2, Version 3 (Claude Opus 4.5)

The first raw draft of the paper was also submitted to Claude Code, Gemini 3 Pro and
ChatGPT 5.1 for feedback and proofreading. This resulted in several improvements, e.g.

• Restricting to n > 0 in Theorem 1.2 to avoid statements about mimima/maxima of
the empty set, and adding the term τn−1

0 in that theorem, for clarity.
• Pointing out that in the proof of Theorem 1.2(a), the case g = 0 cannot reduce all
the way to n = 1 via the string equation (see the corresponding human correction).

The usage of the described AI models was covered by subscriptions in the form of Claude
Max ($100/month), ChatGPT Plus ($20/month) and Google AI Pro ($20/month).

Appendix B. Best practices for attribution of AI use

H
u
m
a
n

After some first pioneering papers [GGL24, RSL+25], recent months have seen a steadily
growing list of articles [AK25, JR25, AM25, IX25, DPS25, For25, Dob25, BCE+25] using
Large Language Models both to study mathematical questions and writing up the results. See
e.g. the awesome-ai-for-math repository maintained by Seewoo Lee for a list of examples.
Given the potential impact of these tools, it is important for the mathematical community
to develop some norms and best practices for attributing their use in our work. Below we
propose some ideas for such measures, and apply these to the present article.

Methodology section
Mathematical papers that benefited from using LLMs, Deep-Learning, proof assistants, or
other software tools should include a section clearly attributing this usage. This section
should include or reference any sample prompts, data repositories or code files that could
help others to examine and reproduce the employed methods, and to adapt them for their
own research.

Transparency about writing tools
When using AI tools for writing first drafts of parts of the paper (e.g. literature overviews,
abstract or content summary, proof sketches, etc), all paragraphs with substantial AI con-
tributions could be typeset in a visually distinctive way.

A
I

This paragraph was generated by Claude Opus 4.5 (Anthropic) to demonstrate the visual
formatting conventions proposed in this appendix. The orange margin bar and label allow
readers to immediately identify AI-authored content, complementing the blue markers used
for human-written passages.
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H
u
m
a
n

A first LaTeX template for such sidebars (created joint
::
ly with Claude Opus 4.5) will be

made available in the auxiliary files published together with the present paper.

Contextualization for non-expert readers
Given the current public interest in AI applications for academic research, results obtained
with the help of AI tend to gain increased levels of attention. In particular, those papers
are exposed to an audience outside of the specialized area in which the result would usually
be received. This creates some incentive, both for the author and the developers of the
relevant AI model, to overstate the importance of the presented result. Thus we believe it
is the responsibility of the author to contextualize the significance of the presented work for
non-experts, ideally in a somewhat prominent place (as with the Author’s Note on the first
page of this article).

References

[ACG11] Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths. Geometry of algebraic curves.
Volume II, volume 268 ofGrundlehren der mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer, Heidelberg, 2011. With a contribution by Joseph
Daniel Harris.

[ACV03] Dan Abramovich, Alessio Corti, and Angelo Vistoli. Twisted bundles and admissible covers.
volume 31, pages 3547–3618. 2003. Special issue in honor of Steven L. Kleiman.

[AK25] Sergey Avvakumov and Roman Karasev. Tensor rank of the determinant and periodic trian-
gulations of Rn, 2025.

[AM25] Boris Alexeev and Dustin G. Mixon. Forbidden sidon subsets of perfect difference sets, featuring
a human-assisted proof, 2025.
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Email address: johannes.schmitt@math.ethz.ch

14


	1. Introduction
	2. Proof of the main theorem
	2.1. Maximal descendants
	2.2. Minimal descendants

	3. Formalized proof via an abstract optimization theorem
	3.1. Slice sequences
	3.2. Unimodality of log-concave palindromic sequences
	3.3. The balancing step
	3.4. The concentrating step

	Appendix A. Methodology: AI-assisted discovery and proof
	A.1. Discovery of the conjecture
	A.2. Submission to IMProofBench
	A.3. Partial formalization and Lean Blueprint
	A.4. Paper preparation

	Appendix B. Best practices for attribution of AI use
	References

